Degradation of dichloroaniline isomers by a newly isolated strain, IMT21 Free

Abstract

An efficient 3,4-dichloroaniline (3,4-DCA)-mineralizing bacterium has been isolated from enrichment cultures originating from a soil sample with a history of repeated exposure to diuron, a major metabolite of which is 3,4-DCA. This bacterium, IMT21, also mineralized 2,3-, 2,4-, 2,5- and 3,5-DCA as sole sources of carbon and energy. These five DCA isomers were degraded via two different routes. 2,3-, 2,4- and 2,5-DCA were degraded via previously unknown dichloroaminophenol metabolites, whereas 3,4- and 3,5-DCA were degraded via dichloroacetanilide.

Keyword(s): DCA, dichloroaniline
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045393-0
2011-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/721.html?itemId=/content/journal/micro/10.1099/mic.0.045393-0&mimeType=html&fmt=ahah

References

  1. Argese E., Bettiol C., Agnoli F., Zambon A., Mazzola M., Ghirardini A. V. 2001; Assessment of chloroaniline toxicity by the submitochondrial particle assay. Environ Toxicol Chem 20:826–832
    [Google Scholar]
  2. Baker G. C., Smith J. J., Cowan D. A. 2003; Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55:541–555
    [Google Scholar]
  3. Claver A., Ormad P., Rodriguez L., Ovelleiro J. L. 2006; Study of the presence of pesticides in surface waters in the Ebro river basin (Spain. Chemosphere 64:1437–1443
    [Google Scholar]
  4. Dejonghe W., Goris J., Dierickx A., Dobbeleer V., Crul K., Vos P., Verstraete W., Top E. M. 2002; Diversity of 3-chloroaniline and 3,4-dichloroaniline degrading bacteria isolated from three different soils and involvement of their plasmids in chloroaniline degradation. FEMS Microbiol Ecol 42:315–325
    [Google Scholar]
  5. Dejonghe W., Berteloot E., Goris J., Boon N., Crul K., Maertens S., Höfte M., De Vos P., Verstraete W., Top E. M. 2003; Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541
    [Google Scholar]
  6. El-Deeb B. A., Ali A. M., Ali K. A. 2000; Some evidences for the involvement of plasmid in diuron herbicide degradation. Acta Microbiol Immunol Hung 47:63–73
    [Google Scholar]
  7. Giacomazzi S., Cochet N. 2004; Environmental impact of diuron transformation: a review. Chemosphere 56:1021–1032
    [Google Scholar]
  8. Götz R., Bauer O. H., Friesel P., Roch K. 1998; Organic trace compounds in the water of the River Elbe near Hamburg, Part I. Chemosphere 36:2085–2101
    [Google Scholar]
  9. Haigler B. E., Nishino S. F., Spain J. C. 1988; Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54:294–301
    [Google Scholar]
  10. Kim Y. M., Park K., Kim W. C., Shin J. H., Kim J. E., Park H. D., Rhee I. K. 2007; Cloning and characterization of a catechol-degrading gene cluster from 3,4-dichloroaniline degrading bacterium Pseudomonas sp. KB35B. J Agric Food Chem 55:4722–4727
    [Google Scholar]
  11. Lee J. B., Sohn H. Y., Shin K. S., Kim J. S., Jo M. S., Jeon C. P., Jang J. O., Kim J. E., Kwon G. S. 2008; Microbial biodegradation and toxicity of vinclozolin and its toxic metabolite 3,5-dichloroaniline. J Microbiol Biotechnol 18:343–349
    [Google Scholar]
  12. Lo H. H., Brown P. I., Rankin G. O. 1990; Acute nephrotoxicity induced by isomeric dichloroanilines in Fischer 344 rats. Toxicology 63:215–231
    [Google Scholar]
  13. Martins M., Rodrigues-Lima F., Dairou J., Lamouri A., Malagnac F., Silar P., Dupret J. M. 2009; An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies. J Biol Chem 284:18726–18733
    [Google Scholar]
  14. NTP Comparative Toxicity Studies 1998; NTP comparative toxicity studies of o -, m -, and p -chloroanilines (CAS nos. 95-51-2; 108-42-9; and 106-47-8) administered by gavage to F344/N rats and B6C3F1 mice. Toxic Rep Ser 43:1–F20
    [Google Scholar]
  15. Padmanabhan J., Parthasarathi R., Subramanian V., Chattaraj P. K. 2006; Theoretical study on the complete series of chloroanilines. J Phys Chem A 110:9900–9907
    [Google Scholar]
  16. Peng J. F., Liu J. F., Jiang G. B., Tai C., Huang M. J. 2005; Ionic liquid for high temperature headspace liquid-phase microextraction of chlorinated anilines in environmental water samples. J Chromatogr A 1072:3–6
    [Google Scholar]
  17. Sørensen S. R., Albers C. N., Aamand J. 2008; Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. strain SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74:2332–2340
    [Google Scholar]
  18. Spain J. C., Nishino S. F. 1987; Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 53:1010–1019
    [Google Scholar]
  19. Spiess E., Sommer C., Gorisch H. 1995; Degradation of 1,4-dichlorobenzene by Xanthobacter flavus 14p1. Appl Environ Microbiol 61:3884–3888
    [Google Scholar]
  20. Struijs J., Rogers J. E. 1989; Reductive dehalogenation of dichloroanilines by anaerobic microorganisms in fresh and dichlorophenol-acclimated pond sediment. Appl Environ Microbiol 55:2527–2531
    [Google Scholar]
  21. Surovtseva E. G., Vasil'eva G. K., Baskunov B. P., Vol'nova A. I. 1981; Decomposition of 3,4-dichloroaniline by an Alcaligenes faecalis culture. Mikrobiologiia 50:740–743
    [Google Scholar]
  22. Surovtseva E. G., Ivoilov V. S., Karasevich Y. N., Vaci'ev G. K. 1985; Chlorinated anilines, a source of carbon, nitrogen, and energy for Pseudomonas diminuta . Mikrobiologiia 54:948–952
    [Google Scholar]
  23. Surovtseva E. G., Ivoilov V. S., Karasevich Y. N. 1986; Metabolism of chlorinated anilines by Pseudomonas diminuta . Mikrobiologiia 55:591–595
    [Google Scholar]
  24. Surovtseva E. G., Sukhikh A. P., Ivoilov V. S. 1993; Isozymes of the pathway for aniline and 4-chloroaniline preparatory metabolism in Alcaligenes sp. Mikrobiologiia 61:99–106
    [Google Scholar]
  25. Takagi K., Iwasaki A., Kamei I., Satsuma K., Yoshioka Y., Harada N. 2009; Aerobic mineralization of hexachlorobenzene by newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl Environ Microbiol 75:4452–4458
    [Google Scholar]
  26. Travkin V., Baskunov B. P., Golovlev E. L., Boersma M. G., Boeren S., Vervoort J., van Berkel W. J., Rietjens I. M., Golovleva L. A. 2002; Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol Lett 209:307–312
    [Google Scholar]
  27. Travkin V. M., Solyanikova I. P., Rietjens I. M., Vervoort J., van Berkel W. J., Golovleva L. A. 2003; Degradation of 3,4-dichloro- and 3,4-difluoroaniline by Pseudomonas fluorescens 26-K. J Environ Sci Health B 38:121–132
    [Google Scholar]
  28. Valentovic M. A., Ball J. G., Anestis D. K., Rankin G. O. 1995; Comparison of the in vitro toxicity of dichloroaniline structural isomers. Toxicol In Vitro 9:75–81
    [Google Scholar]
  29. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  30. Vol'nova A. I., Surovtseva E. G., Vasil'eva G. K. 1980; Acetylation of 3,4-dichloroaniline by representatives of the genus Pseudomonas . Mikrobiologiia 49:167–170
    [Google Scholar]
  31. Yan D. Z., Liu H., Zhou N. Y. 2006; Conversion of Sphingobium chlorophenolicum ATCC 39723 to a hexachlorobenzene degrader by metabolic engineering. Appl Environ Microbiol 72:2283–2286
    [Google Scholar]
  32. You I. S., Bartha R. 1982; Stimulation of 3,4-dichloroaniline mineralization by aniline. Appl Environ Microbiol 44:678–681
    [Google Scholar]
  33. Zhang Z., Schwartz S., Wagner L., Miller W. 2000; A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045393-0
Loading
/content/journal/micro/10.1099/mic.0.045393-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed