1887

Abstract

The ‘iron bacteria’ are a collection of morphologically and phylogenetically heterogeneous prokaryotes. They include some of the first micro-organisms to be observed and described, and continue to be the subject of a considerable body of fundamental and applied microbiological research. While species of iron-oxidizing bacteria can be found in many different phyla, most are affiliated with the Proteobacteria. The latter can be subdivided into four main physiological groups: (i) acidophilic, aerobic iron oxidizers; (ii) neutrophilic, aerobic iron oxidizers; (iii) neutrophilic, anaerobic (nitrate-dependent) iron oxidizers; and (iv) anaerobic photosynthetic iron oxidizers. Some species (mostly acidophiles) can reduce ferric iron as well as oxidize ferrous iron, depending on prevailing environmental conditions. This review describes what is currently known about the phylogenetic and physiological diversity of the iron-oxidizing proteobacteria, their significance in the environment (on the global and micro scales), and their increasing importance in biotechnology.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045344-0
2011-06-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1551.html?itemId=/content/journal/micro/10.1099/mic.0.045344-0&mimeType=html&fmt=ahah

References

  1. Amouric A., Brochier-Armanet C., Johnson D. B., Bonnefoy V., Hallberg K. B.. ( 2011;). Phylogenetic and genetic variation among Fe(II)-oxidizing acidithiobacilli supports the view that these comprise multiple species with different ferrous iron oxidation pathways. Microbiology157:111–122 [CrossRef][PubMed]
    [Google Scholar]
  2. Appia-Ayme C., Guiliani N., Ratouchniak J., Bonnefoy V.. ( 1999;). Characterization of an operon encoding two c-type cytochromes, an aa3 -type cytochrome oxidase, and rusticyanin in Thiobacillus ferrooxidans ATCC 33020. Appl Environ Microbiol65:4781–4787[PubMed]
    [Google Scholar]
  3. Archibald F. S.. ( 1983;). Lactobacillus plantarum, an organism not requiring iron. FEMS Microbiol Lett19:29–32 [CrossRef]
    [Google Scholar]
  4. Battaglia-Brunet F., Joulian C., Garrido F., Dictor M. C., Morin D., Coupland K., Johnson D. B., Hallberg K. B., Baranger P.. ( 2006;). Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov.. Antonie van Leeuwenhoek89:99–108 [CrossRef][PubMed]
    [Google Scholar]
  5. Beller H. R., Chain P. S., Letain T. E., Chakicherla A., Larimer F. W., Richardson P. M., Coleman M. A., Wood A. P., Kelly D. P.. ( 2006;). The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans . J Bacteriol188:1473–1488 [CrossRef][PubMed]
    [Google Scholar]
  6. Benz M., Brune A., Schink B.. ( 1998;). Anaerobic and aerobic oxidation of ferrous iron at neutral pH by chemoheterotrophic nitrate-reducing bacteria. Arch Microbiol169:159–165 [CrossRef][PubMed]
    [Google Scholar]
  7. Blöthe M., Roden E. E.. ( 2009;). Composition and activity of an autotrophic Fe(II)-oxidizing, nitrate-reducing enrichment culture. Appl Environ Microbiol75:6937–6940 [CrossRef][PubMed]
    [Google Scholar]
  8. Bonnefoy V.. ( 2010;). Bioinformatics and genomics of iron and sulfur oxidizing acidophiles. Geomicrobiology: Molecular and Environmental Perspective169–192 Barton L., Mandl M., Loy A.. Heidelberg: Springer; [CrossRef]
    [Google Scholar]
  9. Bridge T. A. M., Johnson D. B.. ( 1998;). Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol64:2181–2186[PubMed]
    [Google Scholar]
  10. Byrne-Bailey K. G., Weber K. A., Chair A. H., Bose S., Knox T., Spanbauer T. L., Chertkov O., Coates J. D.. ( 2010;). Completed genome sequence of the anaerobic iron-oxidizing bacterium Acidovorax ebreus strain TPSY. J Bacteriol192:1475–1476 [CrossRef][PubMed]
    [Google Scholar]
  11. Cárdenas J. P., Valdés J., Quatrini R., Duarte F., Holmes D. S.. ( 2010;). Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Appl Microbiol Biotechnol88:605–620 [CrossRef][PubMed]
    [Google Scholar]
  12. Chaudhuri S. K., Lack J. G., Coates J. D.. ( 2001;). Biogenic magnetite formation through anaerobic biooxidation of Fe(II). Appl Environ Microbiol67:2844–2848 [CrossRef][PubMed]
    [Google Scholar]
  13. ( 2008;).Taal2007: The 12th World Lake Conference
  14. Colmer A. R., Temple K. L., Hinkle M. E.. ( 1950;). An iron-oxidizing bacterium from the drainage of some bitumious coal mines. J Bacteriol59:317–328
    [Google Scholar]
  15. Cornell R. M., Schwertmann U.. ( 2003;). The Iron Oxides Weinheim: Wiley VCH; [CrossRef]
    [Google Scholar]
  16. Coupland K., Johnson D. B.. ( 2008;). Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbiol Lett279:30–35 [CrossRef][PubMed]
    [Google Scholar]
  17. Croal L., Johnson C., Beard B., Newman D.. ( 2004;a). Iron isotope fractionation by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta68:1227–1242 [CrossRef]
    [Google Scholar]
  18. Croal L. R., Gralnick J. A., Malasarn D., Newman D. K.. ( 2004;b). The genetics of geochemistry. Annu Rev Genet38:175–202 [CrossRef][PubMed]
    [Google Scholar]
  19. Croal L. R., Jiao Y., Newman D. K.. ( 2007;). The fox operon from Rhodobacter strain SW2 promotes phototrophic Fe(II) oxidation in Rhodobacter capsulatus SB1003. J Bacteriol189:1774–1782 [CrossRef][PubMed]
    [Google Scholar]
  20. Druschel G. K., Emerson D., Sutka R., Suchecki P., Luther G. W. III. ( 2008;). Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim Cosmochim Acta72:3358–3370 [CrossRef]
    [Google Scholar]
  21. Duchow E., Douglas H. C.. ( 1949;). Rhodomicrobium vannielii, a new photoheterotrophic bacterium. J Bacteriol58:409–416
    [Google Scholar]
  22. Edwards K. J., Rogers D. R., Wirsen C. O., McCollom T. M.. ( 2003;). Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α- and γ-Proteobacteria from the deep sea. Appl Environ Microbiol69:2906–2913 [CrossRef][PubMed]
    [Google Scholar]
  23. Ehrenreich A., Widdel F.. ( 1994;). Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl Environ Microbiol60:4517–4526[PubMed]
    [Google Scholar]
  24. Ehrlich H. L., Newman D. K.. ( 2009;). Geomicrobiology Boca Raton, FL: CRC Press;
    [Google Scholar]
  25. Elias M.. ( 2002;). Nickel laterite deposits – geological overview, resources and exploitation. Giant Ore Deposits: Characteristics, Genesis and Exploration205–220 Cooke D. R., Pongratz J.. Hobart, TAS: Centre for Ore Deposit Research, University of Tasmania;
    [Google Scholar]
  26. Emerson D., Floyd M. M.. ( 2005;). Enrichment and isolation of iron-oxidizing bacteria at neutral pH. Methods Enzymol397:112–123 [CrossRef][PubMed]
    [Google Scholar]
  27. Emerson D., Moyer C.. ( 1997;). Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol63:4784–4792[PubMed]
    [Google Scholar]
  28. Emerson D., Rentz J. A., Lilburn T. G., Davis R. E., Aldrich H., Chan C., Moyer C. L.. ( 2007;). A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE2:e667 [CrossRef][PubMed]
    [Google Scholar]
  29. Emerson D., Fleming E. J., McBeth J. M.. ( 2010;). Iron-oxidizing bacteria: an environmental and genomic perspective. Annu Rev Microbiol64:561–583 [CrossRef][PubMed]
    [Google Scholar]
  30. Ferguson S. J., Ingledew W. J.. ( 2008;). Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochim Biophys Acta1777:1471–1479 [CrossRef][PubMed]
    [Google Scholar]
  31. Finneran K., Anderson R., Nevin K., Lovley D. R.. ( 2002;). Potential for bioremediation of uranium-contaminated aquifers with microbial U(VI) reduction. Soil Sediment Contam11:339–357 [CrossRef]
    [Google Scholar]
  32. Hallbeck L., Pedersen K.. ( 1990;). Culture parameters regulating stalk formation and growth rate of Gallionella ferruginea . J Gen Microbiol136:1675–1680[CrossRef]
    [Google Scholar]
  33. Hallbeck L., Pedersen K.. ( 1991;). Autotrophic and mixotrophic growth of Gallionella ferruginea . J Gen Microbiol137:2657–2661[CrossRef]
    [Google Scholar]
  34. Hallbeck L., Pedersen K.. ( 1995;). Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalk-forming and a non-stalk-forming strain and biofilm studies in situ. Microb Ecol30:257–268 [CrossRef]
    [Google Scholar]
  35. Hallbeck L., Ståhl F., Pedersen K.. ( 1993;). Phylogeny and phenotypic characterization of the stalk-forming and iron-oxidizing bacterium Gallionella ferruginea . J Gen Microbiol139:1531–1535[PubMed][CrossRef]
    [Google Scholar]
  36. Hallberg K. B.. ( 2010;). New perspectives in acid mine drainage microbiology. Hydrometallurgy104:448–453 [CrossRef]
    [Google Scholar]
  37. Hallberg K. B., Coupland K., Kimura S., Johnson D. B.. ( 2006;). Macroscopic streamer growths in acidic, metal-rich mine waters in north Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol72:2022–2030 [CrossRef][PubMed]
    [Google Scholar]
  38. Hallberg K. B., González-Toril E., Johnson D. B.. ( 2010;). Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles14:9–19 [CrossRef][PubMed]
    [Google Scholar]
  39. Hallberg K. B., Hedrich S., Johnson D. B.. ( 2011;). Acidiferrobacter thiooxydans, gen. nov. sp. nov.; an acidophilic, thermo-tolerant, facultatively anaerobic iron- and sulfur-oxidizer of the family Ectothiorhodospiraceae . Extremophiles15:271–279 [CrossRef][PubMed]
    [Google Scholar]
  40. Hamilton W. A.. ( 2003;). Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling19:65–76 [CrossRef][PubMed]
    [Google Scholar]
  41. Hanert H. H.. ( 1981;). The genus Gallionella . The Prokaryotes509–515 Starr M., Stolp H., Trüper H., Balows A., Schlegel H.. Berlin: Springer;[CrossRef]
    [Google Scholar]
  42. Harrison A. P. Jr. ( 1982;). Genomic and physiological diversity amongst strains of Thiobacillus ferrooxidans, and genomic comparison with Thiobacillus thiooxidans . Arch Microbiol131:68–76 [CrossRef]
    [Google Scholar]
  43. Hegler F., Posth N. R., Jiang J., Kappler A.. ( 2008;). Physiology of phototrophic iron(II)-oxidizing bacteria: implications for modern and ancient environments. FEMS Microbiol Ecol66:250–260 [CrossRef][PubMed]
    [Google Scholar]
  44. Heinzel E., Hedrich S., Janneck E., Glombitza F., Seifert J., Schlömann M.. ( 2009;). Bacterial diversity in a mine water treatment plant. Appl Environ Microbiol75:858–861 [CrossRef][PubMed]
    [Google Scholar]
  45. Heising S., Schink B.. ( 1998;). Phototrophic oxidation of ferrous iron by a Rhodomicrobium vannielii strain. Microbiology144:2263–2269 [CrossRef][PubMed]
    [Google Scholar]
  46. Hugenholtz P., Tyson G. W.. ( 2008;). Microbiology: metagenomics. Nature455:481–483 [CrossRef][PubMed]
    [Google Scholar]
  47. Imhoff J. F.. ( 2005;). Genus XVI. Rhodomicrobium . Bergey’s Manual of Systematic Bacteriology543–545 Brenner D. J., Krieg N. R., Staley J. T.. New York: Springer; [CrossRef]
    [Google Scholar]
  48. Ingledew W., Norris P.. ( 1992;). Acidophilic bacteria: adaptations and applications. Molecular Biology and Biotechnology of Extremophiles115–142 Hebert R., Sharp R.. Glasgow: Blackie;
    [Google Scholar]
  49. Jiao Y., Newman D. K.. ( 2007;). The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J Bacteriol189:1765–1773 [CrossRef][PubMed]
    [Google Scholar]
  50. Jiao Y., Kappler A., Croal L. R., Newman D. K.. ( 2005;). Isolation and characterization of a genetically tractable photoautotrophic Fe(II)-oxidizing bacterium, Rhodopseudomonas palustris strain TIE-1. Appl Environ Microbiol71:4487–4496 [CrossRef][PubMed]
    [Google Scholar]
  51. Johnson D. B., Hallberg K. B.. ( 2008;). Carbon, iron and sulfur metabolism in acidophilic micro-organisms. Adv Microb Physiol54:201–255 [CrossRef]
    [Google Scholar]
  52. Jørgensen C. J., Jacobsen O. S., Elberling B., Aamand J.. ( 2009;). Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environ Sci Technol43:4851–4857 [CrossRef][PubMed]
    [Google Scholar]
  53. Kappler A., Newman D. K.. ( 2004;). Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta68:1217–1226 [CrossRef]
    [Google Scholar]
  54. Kappler A., Straub K. L.. ( 2005;). Geomicrobiological cycling of iron. Rev Mineral Geochem59:85–108 [CrossRef]
    [Google Scholar]
  55. Kappler A., Schink B., Newman D. K.. ( 2005;). Fe(III) mineral formation and cell encrustation by the nitrate-dependent Fe(II)-oxidizer strain BoFeN1. Geobiology3:235–245 [CrossRef]
    [Google Scholar]
  56. Karavaiko G. I., Turova T. P., Kondrat’eva T. F., Lysenko A. M., Kolganova T. V., Ageeva S. N., Muntyan L. N., Pivovarova T. A.. ( 2003;). Phylogenetic heterogeneity of the species Acidithiobacillus ferrooxidans . Int J Syst Evol Microbiol53:113–119 [CrossRef][PubMed]
    [Google Scholar]
  57. Kelly D. P.. ( 1978;). Bioenergetics of chemolithotrophic bacteria. Companion to Microbiology; Selected Topics for Further Discussion363–386 Bull A. T., Meadow P. M.. London: Longman;
    [Google Scholar]
  58. Kelly D. P., Wood A. P.. ( 2000;). Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol50:511–516[PubMed][CrossRef]
    [Google Scholar]
  59. Kimura S., Bryan C. G., Hallberg K. B., Johnson D. B.. ( 2011;). Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ Microbiol [CrossRef][PubMed]
    [Google Scholar]
  60. Koehler I., Konhauser K. O., Kappler A.. ( 2010;). Role of microorganisms in banded iron formations. Geomicrobiology: Molecular and Environmental Perspective309–324 Barton L., Mandl M., Loy. A.. Berlin: Springer; [CrossRef]
    [Google Scholar]
  61. Kumaraswamy R., Sjollema K., Kuenen G., van Loosdrecht M., Muyzer G.. ( 2006;). Nitrate-dependent [Fe(II)EDTA]2- oxidation by Paracoccus ferrooxidans sp. nov., isolated from a denitrifying bioreactor. Syst Appl Microbiol29:276–286 [CrossRef][PubMed]
    [Google Scholar]
  62. Langmuir D.. ( 1997;). Aqueous Environmental Geochemistry Upper Saddle River, NJ: Prentice Hall;
    [Google Scholar]
  63. Larimer F. W., Chain P., Hauser L., Lamerdin J., Malfatti S., Do L., Land M. L., Pelletier D. A., Beatty J. T. et al. ( 2004;). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris . Nat Biotechnol22:55–61 [CrossRef][PubMed]
    [Google Scholar]
  64. Levicán G., Ugalde J. A., Ehrenfeld N., Maass A., Parada P.. ( 2008;). Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics9:581 [CrossRef][PubMed]
    [Google Scholar]
  65. Lo I., Denef V. J., Verberkmoes N. C., Shah M. B., Goltsman D., DiBartolo G., Tyson G. W., Allen E. E., Ram R. J. et al. ( 2007;). Strain-resolved community proteomics reveals recombining genomes of acidophilic bacteria. Nature446:537–541 [CrossRef][PubMed]
    [Google Scholar]
  66. Lovley D. R.. ( 1991;). Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev55:259–287[PubMed]
    [Google Scholar]
  67. Lovley D. R.. ( 1997;). Microbial Fe(III) reduction in subsurface environments. FEMS Microbiol Rev20:305–313 [CrossRef]
    [Google Scholar]
  68. Lovley D. R., Phillips E. J.. ( 1986;). Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Appl Environ Microbiol51:683–689[PubMed]
    [Google Scholar]
  69. Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S.. ( 1993;). Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol159:336–344 [CrossRef][PubMed]
    [Google Scholar]
  70. Lovley D. R., Holmes D. E., Nevin K. P.. ( 2004;). Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol49:219–286 [CrossRef][PubMed]
    [Google Scholar]
  71. Lutgens F. K., Tarbuck E. J.. ( 2000;). Essentials of Geology Upper Saddle River, NJ: Prentice Hall;
    [Google Scholar]
  72. Madigan M. T., Martinko J. M., Parker J.. ( 2002;). Brock Biology of Microorganisms Upper Saddle River, NJ: Pearson Education;
    [Google Scholar]
  73. McBeth J. M., Little B. J., Ray R. I., Farrar K. M., Emerson D.. ( 2011;). Neutrophilic iron-oxidizing “zetaproteobacteria” and mild steel corrosion in nearshore marine environments. Appl Environ Microbiol77:1405–1412 [CrossRef][PubMed]
    [Google Scholar]
  74. Millero F. J., Sotolongo S., Izaguirre M.. ( 1987;). The oxidation kinetics of Fe(II) in seawater. Geochim Cosmochim Acta51:793–801 [CrossRef]
    [Google Scholar]
  75. Muehe E. M., Gerhardt S., Schink B., Kappler A.. ( 2009;). Ecophysiology and the energetic benefit of mixotrophic Fe(II) oxidation by various strains of nitrate-reducing bacteria. FEMS Microbiol Ecol70:335–343 [CrossRef][PubMed]
    [Google Scholar]
  76. Nealson K. H.. ( 1983;). The microbial Fe cycle. Microbial Biogeochemistry159–190 Krumbein E.. Oxford: Blackwell;
    [Google Scholar]
  77. Nealson K. H., Saffarini D.. ( 1994;). Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol48:311–343 [CrossRef][PubMed]
    [Google Scholar]
  78. Neubauer S. C., Emerson D., Megonigal J. P.. ( 2002;). Life at the energetic edge: kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol68:3988–3995[CrossRef]
    [Google Scholar]
  79. Nicolle J. C., Simmons S., Bathe S., Norris P. R.. ( 2009;). Ferrous iron oxidation and rusticyanin in halotolerant, acidophilic ‘Thiobacillus prosperus’. Microbiology155:1302–1309 [CrossRef][PubMed]
    [Google Scholar]
  80. Oda Y., Larimer F. W., Chain P. S., Malfatti S., Shin M. V., Vergez L. M., Hauser L., Land M. L., Braatsch S. et al. ( 2008;). Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proc Natl Acad Sci U S A105:18543–18548 [CrossRef][PubMed]
    [Google Scholar]
  81. Ohmura N., Sasaki K., Matsumoto N., Saiki H.. ( 2002;). Anaerobic respiration using Fe3+, S0, and H2 in the chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans . J Bacteriol184:2081–2087 [CrossRef][PubMed]
    [Google Scholar]
  82. Poulain A. J., Newman D. K.. ( 2009;). Rhodobacter capsulatus catalyzes light-dependent Fe(II) oxidation under anaerobic conditions as a potential detoxification mechanism. Appl Environ Microbiol75:6639–6646 [CrossRef][PubMed]
    [Google Scholar]
  83. Pronk J.-T., Johnson D. B.. ( 1992;). Oxidation and reduction of iron by acidophilic bacteria. Geomicrobiol J10:153–171 [CrossRef]
    [Google Scholar]
  84. Pronk J. T., de Bruyn J. C., Bos P., Kuenen J. G.. ( 1992;). Anaerobic growth of Thiobacillus ferrooxidans . Appl Environ Microbiol58:2227–2230[PubMed]
    [Google Scholar]
  85. Quatrini R., Valdés J., Jedlicki E., Holmes D. S.. ( 2007;). The use of bioinformatics and genome biology to advance our understanding of bioleaching microorganisms. Microbial Processing of Metal Sulfides221–239 Donati E., Sand W.. New York: Springer; [CrossRef]
    [Google Scholar]
  86. Rawlings D. E., Johnson D. B.. ( 2007;). Biomining Berlin: Springer; [CrossRef]
    [Google Scholar]
  87. Richmond W. R., Loan M., Morton J., Parkinson G. M.. ( 2004;). Arsenic removal from aqueous solution via ferrihydrite crystallization control. Environ Sci Technol38:2368–2372 [CrossRef][PubMed]
    [Google Scholar]
  88. Roden E. E., Urrutia M. M.. ( 1999;). Ferrous iron removal promotes microbial reduction of crystalline iron(III) oxides. Environ Sci Technol33:1847–1853 [CrossRef]
    [Google Scholar]
  89. Selenska-Pobell S., Otto A., Kutschke S.. ( 1998;). Identification and discrimination of thiobacilli using ARDREA, RAPD, and rep-APD. J Appl Microbiol84:1085–1091 [CrossRef]
    [Google Scholar]
  90. Slyemi D., Moinier D., Brochier-Armanet C., Bonnefoy V., Johnson D. B.. ( 2011;). Characteristics of a phylogenetically-ambiguous, arsenic-oxidizing Thiomonas sp., Thiomonas arsenitoxydans strain 3AsT sp. nov.. Arch Microbiol [CrossRef][PubMed]
    [Google Scholar]
  91. Sobolev D., Roden E. E.. ( 2004;). Characterization of a neutrophilic, chemolithoautotrophic Fe(II)-oxidizing β-proteobacterium isolated from freshwater wetland sediments. Geomicrobiol J21:1–10 [CrossRef]
    [Google Scholar]
  92. Straub K. L., Buchholz-Cleven B. E.. ( 1998;). Enumeration and detection of anaerobic ferrous iron-oxidizing, nitrate-reducing bacteria from diverse European sediments. Appl Environ Microbiol64:4846–4856[PubMed]
    [Google Scholar]
  93. Straub K. L., Benz M., Schink B., Widdel F.. ( 1996;). Anaerobic, nitrate-dependent microbial oxidation of ferrous iron. Appl Environ Microbiol62:1458–1460[PubMed]
    [Google Scholar]
  94. Straub K. L., Rainey F. A., Widdel F.. ( 1999;). Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int J Syst Bacteriol49:729–735 [CrossRef][PubMed]
    [Google Scholar]
  95. Straub K. L., Benz M., Schink B.. ( 2001;). Iron metabolism in anoxic environments at near neutral pH. FEMS Microbiol Ecol34:181–186 [CrossRef][PubMed]
    [Google Scholar]
  96. Straub K. L., Schönhuber W. A., Buchholz-Cleven B. E. E., Schink B.. ( 2004;). Diversity of ferrous iron-oxidizing, nitrate-reducing bacteria and their involvement in oxygen-independent iron cycling. Geomicrobiol J21:371–378 [CrossRef]
    [Google Scholar]
  97. Strnad H., Lapidus A., Paces J., Ulbrich P., Vlcek C., Paces V., Haselkorn R.. ( 2010;). Complete genome sequence of the photosynthetic purple nonsulfur bacterium Rhodobacter capsulatus SB 1003. J Bacteriol192:3545–3546 [CrossRef][PubMed]
    [Google Scholar]
  98. Stumm W., Morgan J. J.. ( 1996;). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters New York: John Wiley & Sons;
    [Google Scholar]
  99. Sudek L., Templeton A., Tebo B., Staudigel H.. ( 2009;). Microbial ecology of Fe (hydr)oxide mats and basaltic rock from Vailulu’u Seamount, American Samoa. Geomicrobiol J26:581–596 [CrossRef]
    [Google Scholar]
  100. Taylor S. W., Lange C. R., Lesold E. A.. ( 1997;). Biofouling of contaminated ground-water recovery wells: characterization of microorganisms. Ground Water35:973–980 [CrossRef]
    [Google Scholar]
  101. Thamdrup B.. ( 2000;). Bacterial manganese and iron reduction in aquatic sediments. Adv Microb Ecol16:41–84
    [Google Scholar]
  102. Thauer R. K., Jungermann K., Decker K.. ( 1977;). Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev41:100–180[PubMed]
    [Google Scholar]
  103. Tuhela L., Carlson L., Tuovinen O. H.. ( 1997;). Biogeochemical transformations of Fe and Mn in oxic groundwater and well water environments. J Env Sci Health32:407–426 [CrossRef]
    [Google Scholar]
  104. Tyson G. W., Chapman J., Hugenholtz P., Allen E. E., Ram R. J., Richardson P. M., Solovyev V. V., Rubin E. M., Rokhsar D. S., Banfield J. F.. ( 2004;). Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature428:37–43 [CrossRef][PubMed]
    [Google Scholar]
  105. Valdés J., Pedroso I., Quatrini R., Dodson R. J., Tettelin H., Blake R. II, Eisen J. A., Holmes D. S.. ( 2008;). Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics9:597 [CrossRef][PubMed]
    [Google Scholar]
  106. Wagner C., Mau M., Schlömann M., Heinicke J., Koch U.. ( 2007;). Characterization of the bacterial flora in mineral waters in upstreaming fluids of deep igneous rock aquifers. J Geophys Res112:G1G01003 [CrossRef]
    [Google Scholar]
  107. Weber K. A., Achenbach L. A., Coates J. D.. ( 2006;). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol4:752–764 [CrossRef][PubMed]
    [Google Scholar]
  108. Weber K. A., Hedrick D. B., Peacock A. D., Thrash J. C., White D. C., Achenbach L. A., Coates J. D.. ( 2009;). Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002. Appl Microbiol Biotechnol83:555–565 [CrossRef][PubMed]
    [Google Scholar]
  109. Weiss J. V., Rentz J. A., Plaia T., Neubauer S. C., Merrill-Floyd M., Lilburn T., Bradburne C., Megonigal J. P., Emerson D.. ( 2007;). Characterization of neutrophilic Fe(II)-oxidizing bacteria isolated from the rhizosphere of wetland plants and description of Ferritrophicum radicicola gen. nov. sp. nov., and Sideroxydans paludicola sp. nov. Geomicrobiol J24:559–570 [CrossRef]
    [Google Scholar]
  110. Widdel F., Schnell S., Heising S., Ehrenreich A., Assmus B., Schink B.. ( 1993;). Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature362:834–836 [CrossRef]
    [Google Scholar]
  111. Williams K. P., Gillespie J. J., Sobral B. W., Nordberg E. K., Snyder E. E., Shallom J. M., Dickerman A. W.. ( 2010;). Phylogeny of gammaproteobacteria. J Bacteriol192:2305–2314[CrossRef]
    [Google Scholar]
  112. Yarzábal A., Appia-Ayme C., Ratouchniak J., Bonnefoy V.. ( 2004;). Regulation of the expression of the Acidithiobacillus ferrooxidans rus operon encoding two cytochromes c, a cytochrome oxidase and rusticyanin. Microbiology150:2113–2123 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045344-0
Loading
/content/journal/micro/10.1099/mic.0.045344-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error