%0 Journal Article %A Giefing-Kröll, Carmen %A Jelencsics, Kira E. %A Reipert, Siegfried %A Nagy, Eszter %T Absence of pneumococcal PcsB is associated with overexpression of LysM domain-containing proteins %D 2011 %J Microbiology, %V 157 %N 7 %P 1897-1909 %@ 1465-2080 %R https://doi.org/10.1099/mic.0.045211-0 %I Microbiology Society, %X The streptococcal protein required for cell separation B (PcsB) is predicted to play an important role in peptidoglycan metabolism, based on sequence motifs and altered phenotypes of gene deletion mutant cells exhibiting defects in cell separation. However, no enzymic activity has been demonstrated for PcsB so far. By generating gene deletion mutant strains in four different genetic backgrounds we could demonstrate that pcsB is not essential for cell survival in Streptococcus pneumoniae, but is essential for proper cell division. Deletion mutant cells displayed cluster formation due to aberrant cell division, reduced growth and antibiotic sensitivity that were fully reverted by transformation with a plasmid carrying pcsB. Immunofluorescence staining revealed that PcsB was localized to the cell poles, similarly to PBP3 and LytB, enzymes with demonstrated peptidoglycan-degrading activity required for daughter cell separation. Similarly to other studies with PcsB homologues, we could not detect peptidoglycan-lytic activity with recombinant or native pneumococcal PcsB in vitro. In addition to defects in septum placement and separation, the absence of PcsB induced an increased release of several proteins, such as enolase, MalX and the SP0107 LysM domain protein. Interestingly, genes encoding both LysM domain-containing proteins that are present in the pneumococcal genome (SP0107 and SP2063) and predicted to be involved in cell wall metabolism were found to be highly overexpressed (14–33-fold increase) in ΔpcsB cells in two different genetic backgrounds. Otherwise, we detected very few changes in the global gene expression profile of cells lacking PcsB. Thus our data suggest that LysM domain proteins partially compensate for the lack of PcsB function and allow the survival and slow growth of the pneumococcus. %U https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.045211-0