1887

Abstract

At the heart of tackling the huge challenge posed by infectious micro-organisms is the overwhelming need to understand their nature. A major question is, why do some species of bacteria rapidly kill their host whilst others are relatively benign? For example, , the causative organism of plague, is a highly virulent human pathogen whilst the closely related causes a much less severe disease. Using molecular techniques such as mutating certain genes, microbiologists have made significant advances over recent decades in elucidating the mechanisms that govern the production of virulence factors involved in causing disease in many bacterial species. There are also evolutionary and ecological factors which will influence virulence. Many of these ideas have arisen through the development of evolutionary theory and yet there is strikingly little empirical evidence testing them. By applying both mechanistic and adaptive approaches to microbial behaviours we can begin to address questions such as, what factors influence cooperation and the evolution of virulence in microbes and can we exploit these factors to develop new antimicrobial strategies?

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045179-0
2010-12-01
2019-08-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3503.html?itemId=/content/journal/micro/10.1099/mic.0.045179-0&mimeType=html&fmt=ahah

References

  1. Alphey, L., Beard, C. B., Billingsley, P., Coetzee, M., Crisanti, A., Curtis, C., Eggleston, P., Godfray, C., Hemingway, J. & other authors ( 2002; ). Malaria control with genetically manipulated insect vectors. Science 298, 119–121.[CrossRef]
    [Google Scholar]
  2. Bainton, N. J., Bycroft, B. W., Chhabra, S. R., Stead, P., Gledhill, L., Hill, P. J., Rees, C. E., Winson, M. K., Salmond, G. P. & other authors ( 1992; ). A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic biosynthesis in Erwinia. Gene 116, 87–91.[CrossRef]
    [Google Scholar]
  3. Barnard, A. M., Bowden, S. D., Burr, T., Coulthurst, S. J., Monson, R. E. & Salmond, G. P. ( 2007; ). Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc Lond B Biol Sci 362, 1165–1183.[CrossRef]
    [Google Scholar]
  4. Bjarnsholt, T. & Givskov, M. ( 2007; ). Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 362, 1213–1222.[CrossRef]
    [Google Scholar]
  5. Brint, J. M. & Ohman, D. E. ( 1995; ). Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR–RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR–LuxI family. J Bacteriol 177, 7155–7163.
    [Google Scholar]
  6. Brown, S. P. & Johnstone, R. A. ( 2001; ). Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc Biol Sci 268, 961–965.[CrossRef]
    [Google Scholar]
  7. Brown, S. P. & Taddei, F. ( 2007; ). The durability of public goods changes the dynamics and nature of social dilemmas. PLoS ONE 2, e593.[CrossRef]
    [Google Scholar]
  8. Brown, S. P., West, S. A., Diggle, S. P. & Griffin, A. S. ( 2009; ). Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philos Trans R Soc Lond B Biol Sci 364, 3157–3168.[CrossRef]
    [Google Scholar]
  9. Burt, A. ( 2003; ). Site-specific selfish genes as tools for the control and genetic engineering of natural populations. Proc Biol Sci 270, 921–928.[CrossRef]
    [Google Scholar]
  10. Diggle, S. P., Crusz, S. A. & Cámara, M. ( 2007a; ). Quorum sensing. Curr Biol 17, R907–R910.[CrossRef]
    [Google Scholar]
  11. Diggle, S. P., Gardner, A., West, S. A. & Griffin, A. S. ( 2007b; ). Evolutionary theory of bacterial quorum sensing: when is a signal not a signal? Philos Trans R Soc Lond B Biol Sci 362, 1241–1249.[CrossRef]
    [Google Scholar]
  12. Diggle, S. P., Griffin, A. S., Campbell, G. S. & West, S. A. ( 2007c; ). Cooperation and conflict in quorum-sensing bacterial populations. Nature 450, 411–414.[CrossRef]
    [Google Scholar]
  13. Dong, Y. H., Wang, L. H. & Zhang, L. H. ( 2007; ). Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond B Biol Sci 362, 1201–1211.[CrossRef]
    [Google Scholar]
  14. Dubern, J. F. & Diggle, S. P. ( 2008; ). Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol Biosyst 4, 882–888.[CrossRef]
    [Google Scholar]
  15. Eberl, L. & Tümmler, B. ( 2004; ). Pseudomonas aeruginosa and Burkholderia cepacia in cystic fibrosis: genome evolution, interactions and adaptation. Int J Med Microbiol 294, 123–131.[CrossRef]
    [Google Scholar]
  16. Frank, S. A. ( 1996; ). Models of parasite virulence. Q Rev Biol 71, 37–78.[CrossRef]
    [Google Scholar]
  17. Fuqua, W. C., Winans, S. & Greenberg, E. ( 1994; ). Quorum sensing in bacteria: the LuxR–LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176, 269–275.
    [Google Scholar]
  18. Gambello, M. J. & Iglewski, B. H. ( 1991; ). Cloning and characterization of the Pseudomonas aeruginosa lasR gene, a transcriptional activator of elastase expression. J Bacteriol 173, 3000–3009.
    [Google Scholar]
  19. Gambello, M. J., Kaye, S. & Iglewski, B. H. ( 1993; ). LasR of Pseudomonas aeruginosa is a transcriptional activator of the alkaline protease gene (apr) and an enhancer of exotoxin A expression. Infect Immun 61, 1180–1184.
    [Google Scholar]
  20. Gardner, A., West, S. A. & Buckling, A. ( 2004; ). Bacteriocins, spite and virulence. Proc Biol Sci 271, 1529–1535.[CrossRef]
    [Google Scholar]
  21. Griffin, A. S., West, S. A. & Buckling, A. ( 2004; ). Cooperation and competition in pathogenic bacteria. Nature 430, 1024–1027.[CrossRef]
    [Google Scholar]
  22. Hamilton, W. D. ( 1964a; ). The genetical evolution of social behaviour. I. J Theor Biol 7, 1–16.[CrossRef]
    [Google Scholar]
  23. Hamilton, W. D. ( 1964b; ). The genetical evolution of social behaviour. II. J Theor Biol 7, 17–52.[CrossRef]
    [Google Scholar]
  24. Hardin, G. ( 1968; ). The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality. Science 162, 1243–1248. [CrossRef]
    [Google Scholar]
  25. Hatchwell, B. J., Ross, D. J., Fowlie, M. K. & McGowan, A. ( 2001; ). Kin discrimination in cooperatively breeding long-tailed tits. Proc Biol Sci 268, 885–890.[CrossRef]
    [Google Scholar]
  26. Hense, B. A., Kuttler, C., Müller, J., Rothballer, M., Hartmann, A. & Kreft, J. U. ( 2007; ). Does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5, 230–239.[CrossRef]
    [Google Scholar]
  27. Inglis, R. F., Gardner, A., Cornelis, P. & Buckling, A. ( 2009; ). Spite and virulence in the bacterium Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 106, 5703–5707.[CrossRef]
    [Google Scholar]
  28. Keller, L. & Surette, M. G. ( 2006; ). Communication in bacteria: an ecological and evolutionary perspective. Nat Rev Microbiol 4, 249–258.[CrossRef]
    [Google Scholar]
  29. Köhler, T., Buckling, A. & van Delden, C. ( 2009; ). Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proc Natl Acad Sci U S A 106, 6339–6344.[CrossRef]
    [Google Scholar]
  30. Köhler, T., Perron, G. G., Buckling, A. & van Delden, C. ( 2010; ). Quorum sensing inhibition selects for virulence and cooperation in Pseudomonas aeruginosa. PLoS Pathog 6, e1000883.[CrossRef]
    [Google Scholar]
  31. Kümmerli, R., Gardner, A., West, S. A. & Griffin, A. S. ( 2009a; ). Limited dispersal, budding dispersal and cooperation: an experimental study. Evolution 63, 939–949.[CrossRef]
    [Google Scholar]
  32. Kümmerli, R., Griffin, A. S., West, S. A., Buckling, A. & Harrison, F. ( 2009b; ). Viscous medium promotes cooperation in the pathogenic bacterium Pseudomonas aeruginosa. Proc Biol Sci 276, 3531–3538.[CrossRef]
    [Google Scholar]
  33. Lenski, R. E. & Travisano, M. ( 1994; ). Dynamics of adaptation and diversification: a 10,000-generation experiment with bacterial populations. Proc Natl Acad Sci U S A 91, 6808–6814.[CrossRef]
    [Google Scholar]
  34. Maynard-Smith, J. & Harper, D. ( 2003; ). Animal Signals. Oxford. : Oxford University Press.
    [Google Scholar]
  35. Nealson, K. H., Platt, T. & Hastings, J. W. ( 1970; ). Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104, 313–322.
    [Google Scholar]
  36. Ng, W. L. & Bassler, B. L. ( 2009; ). Bacterial quorum-sensing network architectures. Annu Rev Genet 43, 197–222.[CrossRef]
    [Google Scholar]
  37. Nogueira, T., Rankin, D. J., Touchon, M., Taddei, F., Brown, S. P. & Rocha, E. P. ( 2009; ). Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr Biol 19, 1683–1691.[CrossRef]
    [Google Scholar]
  38. Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglewski, B. H. & Greenberg, E. P. ( 1994; ). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91, 197–201.[CrossRef]
    [Google Scholar]
  39. Pearson, J. P., Passador, L., Iglewski, B. H. & Greenberg, E. P. ( 1995; ). A second N-acylhomoserine lactone signal produced by Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92, 1490–1494.[CrossRef]
    [Google Scholar]
  40. Pearson, J. P., Pesci, E. C. & Iglewski, B. H. ( 1997; ). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179, 5756–5767.
    [Google Scholar]
  41. Pearson, J. P., Feldman, M., Iglewski, B. H. & Prince, A. ( 2000; ). Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68, 4331–4334.[CrossRef]
    [Google Scholar]
  42. Pesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. ( 1997; ). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179, 3127–3132.
    [Google Scholar]
  43. Pesci, E. C., Milbank, J. B., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P. & Iglewski, B. H. ( 1999; ). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96, 11229–11234.[CrossRef]
    [Google Scholar]
  44. Platt, T. G. & Fuqua, C. ( 2010; ). What's in a name? The semantics of quorum sensing. Trends Microbiol 18, 383–387.[CrossRef]
    [Google Scholar]
  45. Popat, R., Crusz, S. A. & Diggle, S. P. ( 2008; ). The social behaviours of bacterial pathogens. Br Med Bull 87, 63–75.[CrossRef]
    [Google Scholar]
  46. Queller, D. C. & Goodnight, K. F. ( 1989; ). Estimating relatedness using genetic markers. Evolution 43, 258–275.[CrossRef]
    [Google Scholar]
  47. Rainey, P. B. & Rainey, K. ( 2003; ). Evolution of cooperation and conflict in experimental bacterial populations. Nature 425, 72–74.[CrossRef]
    [Google Scholar]
  48. Redfield, R. J. ( 2002; ). Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10, 365–370.[CrossRef]
    [Google Scholar]
  49. Reece, S. E., Drew, D. R. & Gardner, A. ( 2008; ). Sex ratio adjustment and kin discrimination in malaria parasites. Nature 453, 609–614.[CrossRef]
    [Google Scholar]
  50. Rumbaugh, K. P., Griswold, J. A., Iglewski, B. H. & Hamood, A. N. ( 1999; ). Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67, 5854–5862.
    [Google Scholar]
  51. Rumbaugh, K. P., Diggle, S. P., Watters, C. M., Ross-Gillespie, A., Griffin, A. S. & West, S. A. ( 2009; ). Quorum sensing and the social evolution of bacterial virulence. Curr Biol 19, 341–345.
    [Google Scholar]
  52. Sandoz, K. M., Mitzimberg, S. M. & Schuster, M. ( 2007; ). Social cheating in Pseudomonas aeruginosa quorum sensing. Proc Natl Acad Sci U S A 104, 15876–15881.[CrossRef]
    [Google Scholar]
  53. Sinkins, S. P. & Gould, F. ( 2006; ). Gene drive systems for insect disease vectors. Nat Rev Genet 7, 427–435.
    [Google Scholar]
  54. Smith, E. E., Buckley, D. G., Wu, Z., Saenphimmachak, C., Hoffman, L. R., D'Argenio, D. A., Miller, S. I., Ramsey, B. W., Speert, D. P. & other authors ( 2006; ). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103, 8487–8492.[CrossRef]
    [Google Scholar]
  55. Velicer, G. J. & Vos, M. ( 2009; ). Sociobiology of the myxobacteria. Annu Rev Microbiol 63, 599–623.[CrossRef]
    [Google Scholar]
  56. Velicer, G. J., Kroos, L. & Lenski, R. E. ( 2000; ). Developmental cheating in the social bacterium Myxococcus xanthus. Nature 404, 598–601.[CrossRef]
    [Google Scholar]
  57. West, S. A. & Buckling, A. ( 2003; ). Cooperation, virulence and siderophore production in bacterial parasites. Proc Biol Sci 270, 37–44.[CrossRef]
    [Google Scholar]
  58. West, S. A. & Gardner, A. ( 2010; ). Altruism, spite, and greenbeards. Science 327, 1341–1344.[CrossRef]
    [Google Scholar]
  59. West, S. A., Griffin, A. S., Gardner, A. & Diggle, S. P. ( 2006; ). Social evolution theory for microorganisms. Nat Rev Microbiol 4, 597–607.[CrossRef]
    [Google Scholar]
  60. West, S. A., Griffin, A. S. & Gardner, A. ( 2007a; ). Evolutionary explanations for cooperation. Curr Biol 17, R661–R672.[CrossRef]
    [Google Scholar]
  61. West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. ( 2007b; ). The social lives of microbes. Annu Rev Ecol Evol Syst 38, 53–77.[CrossRef]
    [Google Scholar]
  62. Williams, P. ( 2007; ). Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology 153, 3923–3938.[CrossRef]
    [Google Scholar]
  63. Williams, P. & Cámara, M. ( 2009; ). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12, 182–191.[CrossRef]
    [Google Scholar]
  64. Winson, M. K., Camara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. P. & other authors ( 1995; ). Multiple N-acyl-l-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 92, 9427–9431.[CrossRef]
    [Google Scholar]
  65. Winzer, K., Falconer, C., Garber, N. C., Diggle, S. P., Camara, M. & Williams, P. ( 2000; ). The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182, 6401–6411.[CrossRef]
    [Google Scholar]
  66. Wu, H., Song, Z., Givskov, M., Doring, G., Worlitzsch, D., Mathee, K., Rygaard, J. & Høiby, N. ( 2001; ). Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147, 1105–1113.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045179-0
Loading
/content/journal/micro/10.1099/mic.0.045179-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error