1887

Abstract

Phages have recently been implicated as important in biofilm development, although the mechanisms whereby phages impact biofilms remain unclear. One defective lambdoid phage carried by K-12 is DLP12. Among the genes found in DLP12 are , and , which are homologues of the Lambda phage genes encoding cell-lysis proteins (S, R and Rz/Rz). The role that these DLP12 lysis genes play in biofilm formation was examined in deletion mutants of PHL628, a curli-overproducing, biofilm-forming K-12 derivative. Strains lacking , and were unable to form wild-type biofilms. While all mutants were compromised in attachment to abiotic surfaces and aggregated less well than the wild-type, the effect of the knockout on biofilm formation was less dramatic than that of deleting or . These results were consistent with electron micrographs of the mutants, which showed a decreased number of curli fibres on cell surfaces. Also consistent with this finding, we observed that expression from the promoter of , which encodes the curli subunits, was downregulated in the mutants. As curli production is transcriptionally downregulated in response to cell wall stress, we challenged the mutants with SDS and found them to be more sensitive to the detergent than the wild-type. We also examined the release of C-labelled peptidoglycan from the mutants and found that they did not lose labelled peptidoglycan to the same extent as the wild-type. Given that curli production is known to be suppressed by -acetylglucosamine 6-phosphate (NAG-6P), a metabolite produced during peptidoglycan recycling, we deleted , the -acetylglucosamine kinase gene, from the lysis mutants and found that this restored curli production. This suggested that deletion of the lysis genes affected cell wall status, which was transduced to the curli operon by NAG-6P via an as yet unknown mechanism. These observations provide evidence that the S, R and Rz/Rz gene homologues encoded by DLP12 are not merely genetic junk, but rather play an important, though undefined, role in cell wall maintenance.

Funding
This study was supported by the:
  • American Heart Foundation
  • United States Department of Agriculture
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045161-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/6/1640.html?itemId=/content/journal/micro/10.1099/mic.0.045161-0&mimeType=html&fmt=ahah

References

  1. Andersen J. B., Sternberg C., Poulsen L. K., Bjorn S. P., Givskov M., Molin S. ( 1998). New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl Environ Microbiol 64:2240–2246
    [Google Scholar]
  2. Barnhart M. M., Chapman M. R. ( 2006). Curli biogenesis and function. Annu Rev Microbiol 60:131–147 [View Article][PubMed]
    [Google Scholar]
  3. Barnhart M. M., Lynem J., Chapman M. R. ( 2006). GlcNAc-6P levels modulate the expression of curli fibers by Escherichia coli. J Bacteriol 188:5212–5219 [View Article][PubMed]
    [Google Scholar]
  4. Barrios A. F., Zuo R., Ren D., Wood T. K. ( 2006). Hha, YbaJ, and OmpA regulate Escherichia coli K12 biofilm formation and conjugation plasmids abolish motility. Biotechnol Bioeng 93:188–200 [View Article][PubMed]
    [Google Scholar]
  5. Bayles K. W. ( 2007). The biological role of death and lysis in biofilm development. Nat Rev Microbiol 5:721–726 [View Article][PubMed]
    [Google Scholar]
  6. Campbell A. ( 1994). Comparative molecular biology of lambdoid phages. Annu Rev Microbiol 48:193–222 [View Article][PubMed]
    [Google Scholar]
  7. Casjens S. ( 2003). Prophages and bacterial genomics: what have we learned so far?. Mol Microbiol 49:277–300 [View Article][PubMed]
    [Google Scholar]
  8. Choi K.-H., Schweizer H. P. ( 2005). An improved method for rapid generation of unmarked Pseudomonas aeruginosa deletion mutants. BMC Microbiol 5:30 [View Article][PubMed]
    [Google Scholar]
  9. Datsenko K. A., Wanner B. L. ( 2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  10. Dubrac S., Boneca I. G., Poupel O., Msadek T. ( 2007). New insights into the WalK/WalR (YycG/YycF) essential signal transduction pathway reveal a major role in controlling cell wall metabolism and biofilm formation in Staphylococcus aureus. J Bacteriol 189:8257–8269 [View Article][PubMed]
    [Google Scholar]
  11. García-Contreras R., Zhang X.-S., Kim Y., Wood T. K. ( 2008). Protein translation and cell death: the role of rare tRNAs in biofilm formation and in activating dormant phage killer genes. PLoS ONE 3:e2394 [View Article][PubMed]
    [Google Scholar]
  12. Genevaux P., Muller S., Bauda P. ( 1996). A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiol Lett 142:27–30 [View Article][PubMed]
    [Google Scholar]
  13. Goodell E. W., Schwarz U. ( 1985). Release of cell wall peptides into culture medium by exponentially growing Escherichia coli. J Bacteriol 162:391–397[PubMed]
    [Google Scholar]
  14. Gophna U., Barlev M., Seijffers R., Oelschlager T. A., Hacker J., Ron E. Z. ( 2001). Curli fibers mediate internalization of Escherichia coli by eukaryotic cells. Infect Immun 69:2659–2665 [View Article][PubMed]
    [Google Scholar]
  15. Heydorn A., Nielsen A. T., Hentzer M., Sternberg C., Givskov M., Ersbøll B. K., Molin S. ( 2000). Quantification of biofilm structures by the novel computer program comstat. Microbiology 146:2395–2407[PubMed]
    [Google Scholar]
  16. Höltje J.-V. ( 1998). Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203[PubMed]
    [Google Scholar]
  17. Ize B., Stanley N. R., Buchanan G., Palmer T. ( 2003). Role of the Escherichia coli Tat pathway in outer membrane integrity. Mol Microbiol 48:1183–1193 [View Article][PubMed]
    [Google Scholar]
  18. Jubelin G., Vianney A., Beloin C., Ghigo J. M., Lazzaroni J. C., Lejeune P., Dorel C. ( 2005). CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol 187:2038–2049 [View Article][PubMed]
    [Google Scholar]
  19. ).Examination of biofilm development using array based and molecular approaches
  20. Keep N. H., Ward J. M., Cohen-Gonsaud M., Henderson B. ( 2006). Wake up! Peptidoglycan lysis and bacterial non-growth states. Trends Microbiol 14:271–276 [View Article][PubMed]
    [Google Scholar]
  21. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. ( 1995). Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176 [View Article][PubMed]
    [Google Scholar]
  22. Lindsey D. F., Mullin D. A., Walker J. R. ( 1989). Characterization of the cryptic lambdoid prophage DLP12 of Escherichia coli and overlap of the DLP12 integrase gene with the tRNA gene argU. J Bacteriol 171:6197–6205[PubMed]
    [Google Scholar]
  23. McCullar M. V., Brenner V., Adams R. H., Focht D. D. ( 1994). Construction of a novel polychlorinated biphenyl-degrading bacterium: utilization of 3,4′-dichlorobiphenyl by Pseudomonas acidovorans M3GY. Appl Environ Microbiol 60:3833–3839[PubMed]
    [Google Scholar]
  24. Pratt L. A., Kolter R. ( 1999). Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2:598–603 [View Article][PubMed]
    [Google Scholar]
  25. Prigent-Combaret C., Prensier G., Le Thi T. T., Vidal O., Lejeune P., Dorel C. ( 2000). Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2:450–464 [View Article][PubMed]
    [Google Scholar]
  26. Rhodius V. A., Suh W. C., Nonaka G., West J., Gross C. A. ( 2006). Conserved and variable functions of the σE stress response in related genomes. PLoS Biol 4:e2 [View Article][PubMed]
    [Google Scholar]
  27. Ryu J. H., Kim H., Frank J. F., Beuchat L. R. ( 2004). Attachment and biofilm formation on stainless steel by Escherichia coli O157 : H7 as affected by curli production. Lett Appl Microbiol 39:359–362 [View Article][PubMed]
    [Google Scholar]
  28. Srividhya K. V., Krishnaswamy S. ( 2007). Subclassification and targeted characterization of prophage-encoded two-component cell lysis cassette. J Biosci 32:Suppl. 1979–990 [View Article][PubMed]
    [Google Scholar]
  29. Stanley N. R., Lazazzera B. A. ( 2004). Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924 [View Article][PubMed]
    [Google Scholar]
  30. Uehara T., Park J. T. ( 2004). The N-acetyl-d-glucosamine kinase of Escherichia coli and its role in murein recycling. J Bacteriol 186:7273–7279 [View Article][PubMed]
    [Google Scholar]
  31. Vidal O., Longin R., Prigent-Combaret C., Dorel C., Hooreman M., Lejeune P. ( 1998). Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180:2442–2449[PubMed]
    [Google Scholar]
  32. Vollmer W., Höltje J.-V. ( 2001). Morphogenesis of Escherichia coli. Curr Opin Microbiol 4:625–633 [View Article][PubMed]
    [Google Scholar]
  33. Vollmer W., Höltje J.-V. ( 2004). The architecture of the murein (peptidoglycan) in Gram-negative bacteria: vertical scaffold or horizontal layer(s)?. J Bacteriol 186:5978–5987 [View Article][PubMed]
    [Google Scholar]
  34. Vollmer W., Tomasz A. ( 2002). Peptidoglycan N-acetylglucosamine deacetylase, a putative virulence factor in Streptococcus pneumoniae. Infect Immun 70:7176–7178 [View Article][PubMed]
    [Google Scholar]
  35. Walburger A., Lazdunski C., Corda Y. ( 2002). The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. Mol Microbiol 44:695–708 [View Article][PubMed]
    [Google Scholar]
  36. Wang X., Kim Y., Wood T. K. ( 2009). Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms. ISME J 3:1164–1179 [View Article][PubMed]
    [Google Scholar]
  37. Wang X., Kim Y., Ma Q., Hong S. H., Pokusaeva K., Sturino J. M., Wood T. K. ( 2010). Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147 [View Article][PubMed]
    [Google Scholar]
  38. Webb J. S., Thompson L. S., James S., Charlton T., Tolker-Nielsen T., Koch B., Givskov M., Kjelleberg S. ( 2003). Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592 [View Article][PubMed]
    [Google Scholar]
  39. Webb J. S., Lau M., Kjelleberg S. ( 2004). Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186:8066–8073 [View Article][PubMed]
    [Google Scholar]
  40. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. ( 2001). Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864 [View Article][PubMed]
    [Google Scholar]
  41. Xu M., Arulandu A., Struck D. K., Swanson S., Sacchettini J. C., Young R. ( 2005). Disulfide isomerization after membrane release of its SAR domain activates P1 lysozyme. Science 307:113–117 [View Article][PubMed]
    [Google Scholar]
  42. Young I., Wang I., Roof W. D. ( 2000). Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128 [View Article][PubMed]
    [Google Scholar]
  43. Zhang N., Young R. ( 1999). Complementation and characterization of the nested Rz and Rz1 reading frames in the genome of bacteriophage lambda. Mol Gen Genet 262:659–667 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045161-0
Loading
/content/journal/micro/10.1099/mic.0.045161-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error