1887

Abstract

Pathogenic mycobacteria possess two homologous chaperones encoded by and . Cpn60.2 is essential for survival, providing the basic chaperone function, while Cpn60.1 is not. In the present study, we show that inactivation of the BCG () gene does not significantly affect bacterial growth in 7H9 broth, but that this knockout mutant (Δ) forms smaller colonies on solid 7H11 medium than the parental and complemented strains. When growing on Sauton medium, the Δ mutant exhibits a thinner surface pellicle and is associated with higher culture filtrate protein content and, coincidentally, with less protein in its outermost cell envelope in comparison with the parental and complemented strains. Interestingly, in this culture condition, the Δ mutant is devoid of phthiocerol dimycocerosates, and its mycolates are two carbon atoms longer than those of the wild-type, a phenotype that is fully reversed by complementation. In addition, Δ bacteria are more sensitive to stress induced by HO but not by SDS, high temperature or acidic pH. Taken together, these data indicate that the cell wall of the Δ mutant is impaired. Analysis by 2D gel electrophoresis and MS reveals the upregulation of a few proteins such as FadA2 and isocitrate lyase in the cell extract of the mutant, whereas more profound differences are found in the composition of the mycobacterial culture filtrate, e.g. the well-known Hsp65 chaperonin Cpn60.2 is particularly abundant and increases about 200-fold in the filtrate of the Δ mutant. In mice, the Δ mutant is less persistent in lungs and, to a lesser extent, in spleen, but it induces a comparable mycobacteria-specific gamma interferon production and protection against H37Rv challenge as do the parental and complemented BCG strains. Thus, by inactivating the gene in BCG we show that Cpn60.1 is necessary for the integrity of the bacterial cell wall, is involved in resistance to HO-induced stress but is not essential for its vaccine potential.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045120-0
2011-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1205.html?itemId=/content/journal/micro/10.1099/mic.0.045120-0&mimeType=html&fmt=ahah

References

  1. Barreiro C., Gonzalez-Lavado E., Patek M., Martin J. F. 2004; Transcriptional analysis of the groES–groEL1 , groEL2 , and dnaK genes in Corynebacterium glutamicum : characterization of heat-shock-induced promoters. J Bacteriol 186:4813–4817
    [Google Scholar]
  2. Berthet F. X., Lagranderie M., Gounon P., Laurent-Winter C., Ensergueix D., Chavarot P., Thouron F., Maranghi E., Pelicic V. other authors 1998; Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene. Science 282:759–762
    [Google Scholar]
  3. Bhatt A., Fujiwara N., Bhatt K., Gurcha S. S., Kremer L., Chen B., Chan J., Porcelli S. A., Kobayashi K. other authors 2007; Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci U S A 104:5157–5162
    [Google Scholar]
  4. Bonato V. L., Lima V. M., Tascon R. E., Lowrie D. B., Silva C. L. 1998; Identification and characterization of protective T cells in hsp65 DNA-vaccinated and Mycobacterium tuberculosis -infected mice. Infect Immun 66:169–175
    [Google Scholar]
  5. Braig K., Otwinowski Z., Hegde R., Boisvert D. C., Joachimiak A., Horwich A. L., Sigler P. B. 1994; The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371:578–586
    [Google Scholar]
  6. Cappello F., Czarnecka A. M., La Rocca G., Di Stefano A., Zummo G., Macario A. J. 2007; Hsp60 and Hspl0 as antitumor molecular agents. Cancer Biol Ther 6:487–489
    [Google Scholar]
  7. Cappello F., de Macario E. C., Marasa L., Zummo G., Macario A. J. 2008; Hsp60 expression, new locations, functions, and perspectives for cancer diagnosis and therapy. Cancer Biol Ther 7:801–809
    [Google Scholar]
  8. Cehovin A., Coates A. R., Hu Y., Riffo-Vasquez Y., Tormay P., Botanch C., Altare F., Henderson B. 2010; Comparison of the moonlighting actions of the two highly homologous chaperonin 60 proteins of Mycobacterium tuberculosis . Infect Immun 78:3196–3206
    [Google Scholar]
  9. Cheng M. Y., Hartl F. U., Martin J., Pollock R. A., Kalousek F., Neupert W., Hallberg E. M., Hallberg R. L., Horwich A. L. 1989; Mitochondrial heat-shock protein Hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337:620–625
    [Google Scholar]
  10. Constant P., Perez E., Malaga W., Laneelle M. A., Saurel O., , Daffé M., Guilhot C. 2002; Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J Biol Chem 277:38148–38158
    [Google Scholar]
  11. Daffé M., Laneelle M. A., Asselineau C., Levy-Frebault V., David H. 1983; Taxonomic value of mycobacterial fatty acids: proposal for a method of analysis. Ann Microbiol (Paris 134B:241–256
    [Google Scholar]
  12. De Bruyn J., Bosmans R., Turneer M., Weckx M., Nyabenda J., Van Vooren J. P., Falmagne P., Wiker H. G., Harboe M. 1987; Purification, partial characterization, and identification of a skin-reactive protein antigen of Mycobacterium bovis BCG. Infect Immun 55:245–252
    [Google Scholar]
  13. De Bruyn J., Soetaert K., Buyssens P., Calonne I., De Coene J. L., Gallet X., Brasseur R., Wattiez R., Falmagne P. other authors 2000; Evidence for specific and non-covalent binding of lipids to natural and recombinant Mycobacterium bovis BCG hsp60 proteins, and to the Escherichia coli homologue GroEL. Microbiology 146:1513–1524
    [Google Scholar]
  14. Donà V., Rodrigue S., Dainese E., Palu G., Gaudreau L., Manganelli R., Provvedi R. 2008; Evidence of complex transcriptional, translational, and posttranslational regulation of the extracytoplasmic function sigma factor σ E in Mycobacterium tuberculosis . J Bacteriol 190:5963–5971
    [Google Scholar]
  15. Dosanjh N. S., Rawat M., Chung J. H., Av-Gay Y. 2005; Thiol specific oxidative stress response in Mycobacteria . FEMS Microbiol Lett 249:87–94
    [Google Scholar]
  16. Fayet O., Ziegelhoffer T., Georgopoulos C. 1989; The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol 171:1379–1385
    [Google Scholar]
  17. Fisher M. T. 1998; GroE chaperonin-assisted folding and assembly of dodecameric glutamine synthetase. Biochemistry 63:382–398
    [Google Scholar]
  18. Fontán P. A., Voskuil M. I., Gomez M., Tan D., Pardini M., Manganelli R., Fattorini L., Schoolnik G. K., Smith I. 2009; The Mycobacterium tuberculosis sigma factor σ B is required for full response to cell envelope stress and hypoxia in vitro, but it is dispensable for in vivo growth. J Bacteriol 191:5628–5633
    [Google Scholar]
  19. Galamba A., Soetaert K., Wang X. M., De Bruyn J., Jacobs P., Content J. 2001; Disruption of adhC reveals a large duplication in the Mycobacterium smegmatis mc(2)155 genome. Microbiology 147:3281–3294
    [Google Scholar]
  20. Gao L. Y., Laval F., Lawson E. H., Groger R. K., Woodruff A., Morisaki J. H., Cox J. S., , Daffé M., Brown E. J. 2003; Requirement for kasB in Mycobacterium mycolic acid biosynthesis, cell wall impermeability and intracellular survival: implications for therapy. Mol Microbiol 49:1547–1563
    [Google Scholar]
  21. Gengenbacher M., Rao S. P., Pethe K., Dick T. 2010; Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156:81–87
    [Google Scholar]
  22. Grimaud R., Toussaint A. 1998; Assembly of both the head and tail of bacteriophage Mu is blocked in Escherichia coli groEL and groES mutants. J Bacteriol 180:1148–1153
    [Google Scholar]
  23. He H., Hovey R., Kane J., Singh V., Zahrt T. C. 2006; MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis . J Bacteriol 188:2134–2143
    [Google Scholar]
  24. Hendrix R. W., Tsui L. 1978; Role of the host in virus assembly: cloning of the Escherichia coli groE gene and identification of its protein product. Proc Natl Acad Sci U S A 75:136–139
    [Google Scholar]
  25. Hickey T. B., Thorson L. M., Speert D. P., , Daffé M., Stokes R. W. 2009; Mycobacterium tuberculosis Cpn60.2 and DnaK are located on the bacterial surface, where Cpn60.2 facilitates efficient bacterial association with macrophages. Infect Immun 77:3389–3401
    [Google Scholar]
  26. Horwich A. L., Low K. B., Fenton W. A., Hirshfield I. N., Furtak K. 1993; Folding in vivo of bacterial cytoplasmic proteins: role of GroEL. Cell 74:909–917
    [Google Scholar]
  27. Horwich A. L., Farr G. W., Fenton W. A. 2006; GroEL–GroES-mediated protein folding. Chem Rev 106:1917–1930
    [Google Scholar]
  28. Horwich A. L., Fenton W. A., Chapman E., Farr G. W. 2007; Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23:115–145
    [Google Scholar]
  29. Hu Y., Kendall S., Stoker N. G., Coates A. R. 2004; The Mycobacterium tuberculosis sigJ gene controls sensitivity of the bacterium to hydrogen peroxide. FEMS Microbiol Lett 237:415–423
    [Google Scholar]
  30. Hu Y., Henderson B., Lund P. A., Tormay P., Ahmed M. T., Gurcha S. S., Besra G. S., Coates A. R. 2008; A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun 76:1535–1546
    [Google Scholar]
  31. Huang C. Y., Chen C. A., Lee C. N., Chang M. C., Su Y. N., Lin Y. C., Hsieh C. Y., Cheng W. F. 2007; DNA vaccine encoding heat shock protein 60 co-linked to HPV16 E6 and E7 tumor antigens generates more potent immunotherapeutic effects than respective E6 or E7 tumor antigens. Gynecol Oncol 107:404–412
    [Google Scholar]
  32. Hümpel A., Gebhard S., Cook G. M., Berney M. 2010; The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress. J Bacteriol 192:2491–2502
    [Google Scholar]
  33. Huygen K., Van Vooren J. P., Turneer M., Bosmans R., Dierckx P., De Bruyn J. 1988; Specific lymphoproliferation, gamma interferon production, and serum immunoglobulin G directed against a purified 32 kDa mycobacterial protein antigen (P32) in patients with active tuberculosis. Scand J Immunol 27:187–194
    [Google Scholar]
  34. Huygen K., Content J., Denis O., Montgomery D. L., Yawman A. M., Deck R. R., DeWitt C. M., Orme I. M., Baldwin S. other authors 1996; Immunogenicity and protective efficacy of a tuberculosis DNA vaccine. Nat Med 2:893–898
    [Google Scholar]
  35. Jungblut P. R., Schaible U. E., Mollenkopf H. J., Zimny-Arndt U., Raupach B., Mattow J., Halada P., Lamer S., Hagens K., Kaufmann S. H. 1999; Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 33:1103–1117
    [Google Scholar]
  36. Kalpana G. V., Bloom B. R., Jacobs W. R. Jr 1991; Insertional mutagenesis and illegitimate recombination in mycobacteria. Proc Natl Acad Sci U S A 88:5433–5437
    [Google Scholar]
  37. Kaufmann S. H. 1990; Heat shock proteins and the immune response. Immunol Today 11:129–136
    [Google Scholar]
  38. Kaufmann S. H., Vath U., Thole J. E., Van Embden J. D., Emmrich F. 1987; Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur J Immunol 17:351–357
    [Google Scholar]
  39. Kendall S. L., Movahedzadeh F., Rison S. C., Wernisch L., Parish T., Duncan K., Betts J. C., Stoker N. G. 2004; The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis (Edinb 84:247–255
    [Google Scholar]
  40. Kong T. H., Coates A. R., Butcher P. D., Hickman C. J., Shinnick T. M. 1993; Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci U S A 90:2608–2612
    [Google Scholar]
  41. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  42. Laval F., Laneelle M. A., Deon C., Monsarrat B., Daffé M. 2001; Accurate molecular mass determination of mycolic acids by MALDI-TOF mass spectrometry. Anal Chem 73:4537–4544
    [Google Scholar]
  43. Leroy B., Roupie V., Noël-Georis I., Rosseels V., Walravens K., Govaerts M., Huygen K., Wattiez R. 2007; Antigen discovery: a postgenomic approach to paratuberculosis diagnosis. Proteomics 7:1164–1176
    [Google Scholar]
  44. Lewthwaite J. C., Coates A. R., Tormay P., Singh M., Mascagni P., Poole S., Roberts M., Sharp L., Henderson B. 2001; Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69:7349–7355
    [Google Scholar]
  45. Lozes E., Huygen K., Content J., Denis O., Montgomery D. L., Yawman A. M., Vandenbussche P., Van Vooren J. P., Drowart A. other authors 1997; Immunogenicity and efficacy of a tuberculosis DNA vaccine encoding the components of the secreted antigen 85 complex. Vaccine 15:830–833
    [Google Scholar]
  46. Lund P. A. 2001; Microbial molecular chaperones. Adv Microb Physiol 44:93–140
    [Google Scholar]
  47. Målen H., Berven F. S., Fladmark K. E., Wiker H. G. 2007; Comprehensive analysis of exported proteins from Mycobacterium tuberculosis H37Rv. Proteomics 7:1702–1718
    [Google Scholar]
  48. Manganelli R., Voskuil M. I., Schoolnik G. K., Smith I. 2001; The Mycobacterium tuberculosis ECF sigma factor σ E: role in global gene expression and survival in macrophages. Mol Microbiol 41:423–437
    [Google Scholar]
  49. Manganelli R., Provvedi R., Rodrigue S., Beaucher J., Gaudreau L., Smith I. 2004; Sigma factors and global gene regulation in Mycobacterium tuberculosis . J Bacteriol 186:895–902
    [Google Scholar]
  50. Mastroleo F., Leroy B., Van Houdt R., s'Heeren C., Mergeay M., Hendrickx L., Wattiez R. 2009; Shotgun proteome analysis of Rhodospirillum rubrum S1H: integrating data from gel-free and gel-based peptides fractionation methods. J Proteome Res 8:2530–2541
    [Google Scholar]
  51. McKinney J. D., Höner zu Bentrup K., Muñoz-Elías E. J., Miczak A., Chen B., Chan W. T., Swenson D., Sacchettini J. C., Jacobs W. R. Jr, Russell D. G. 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738
    [Google Scholar]
  52. Missiakas D., Raina S. 1998; The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066
    [Google Scholar]
  53. Mollenkopf H. J., Jungblut P. R., Raupach B., Mattow J., Lamer S., Zimny-Arndt U., Schaible U. E., Kaufmann S. H. 1999; A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20:2172–2180
    [Google Scholar]
  54. Monahan I. M., Betts J., Banerjee D. K., Butcher P. D. 2001; Differential expression of mycobacterial proteins following phagocytosis by macrophages. Microbiology 147:459–471
    [Google Scholar]
  55. Munk M. E., De Bruyn J., Gras H., Kaufmann S. H. 1994; The Mycobacterium bovis 32-kilodalton protein antigen induces human cytotoxic T-cell responses. Infect Immun 62:726–728
    [Google Scholar]
  56. Muñoz-Elías E. J., McKinney J. D. 2005; Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644
    [Google Scholar]
  57. Noël-Georis I., Vallaeys T., Chauvaux R., Monchy S., Falmagne P., Mergeay M., Wattiez R. 2004; Global analysis of the Ralstonia metallidurans proteome: prelude for the large-scale study of heavy metal response. Proteomics 4:151–179
    [Google Scholar]
  58. Ojha A., Anand M., Bhatt A., Kremer L., Jacobs W. R. Jr, Hatfull G. F. 2005; GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123:861–873
    [Google Scholar]
  59. Ortalo-Magné A., Dupont M. A., Lemassu A., Andersen A. B., Gounon P., Daffé M. 1995; Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141:1609–1620
    [Google Scholar]
  60. Peetermans W. E., Raats C. J., Langermans J. A., van Furth R. 1994; Mycobacterial heat-shock protein 65 induces proinflammatory cytokines but does not activate human mononuclear phagocytes. Scand J Immunol 39:613–617
    [Google Scholar]
  61. Peirs P., Lefèvre P., Boarbi S., Wang X. M., Denis O., Braibant M., Pethe K., Locht C., Huygen K., Content J. 2005; Mycobacterium tuberculosis with disruption in genes encoding the phosphate binding proteins PstS1 and PstS2 is deficient in phosphate uptake and demonstrates reduced in vivo virulence. Infect Immun 73:1898–1902
    [Google Scholar]
  62. Pelicic V., Jackson M., Reyrat J. M., Jacobs W. R. Jr, Gicquel B., Guilhot C. 1997; Efficient allelic exchange and transposon mutagenesis in Mycobacterium tuberculosis . Proc Natl Acad Sci U S A 94:10955–10960
    [Google Scholar]
  63. Prakken B. J., Roord S., Ronaghy A., Wauben M., Albani S., van Eden W. 2003; Heat shock protein 60 and adjuvant arthritis: a model for T cell regulation in human arthritis. Springer Semin Immunopathol 25:47–63
    [Google Scholar]
  64. Qamra R., Mande S. C., Coates A. R., Henderson B. 2005; The unusual chaperonins of Mycobacterium tuberculosis . Tuberculosis (Edinb 85:385–394
    [Google Scholar]
  65. Rafidinarivo E., Laneelle M. A., Montrozier H., Valero-Guillen P., Astola J., Luquin M., Prome J. C., Daffé M. 2009; Trafficking pathways of mycolic acids: structures, origin, mechanism of formation, and storage form of mycobacteric acids. J Lipid Res 50:477–490
    [Google Scholar]
  66. Riffo-Vasquez Y., Spina D., Page C., Tormay P., Singh M., Henderson B., Coates A. 2004; Effect of Mycobacterium tuberculosis chaperonins on bronchial eosinophilia and hyper-responsiveness in a murine model of allergic inflammation. Clin Exp Allergy 34:712–719
    [Google Scholar]
  67. Roberts D. M., Liao R. P., Wisedchaisri G., Hol W. G., Sherman D. R. 2004; Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis . J Biol Chem 279:23082–23087
    [Google Scholar]
  68. Rosenkrands I., King A., Weldingh K., Moniatte M., Moertz E., Andersen P. 2000a; Towards the proteome of Mycobacterium tuberculosis . Electrophoresis 21:3740–3756
    [Google Scholar]
  69. Rosenkrands I., Weldingh K., Jacobsen S., Hansen C. V., Florio W., Gianetri I., Andersen P. 2000b; Mapping and identification of Mycobacterium tuberculosis proteins by two-dimensional gel electrophoresis, microsequencing and immunodetection. Electrophoresis 21:935–948
    [Google Scholar]
  70. Saibil H. R. 2000; Conformational changes studied by cryo-electron microscopy. Nat Struct Biol 7:711–714
    [Google Scholar]
  71. Sigler P. B., Xu Z., Rye H. S., Burston S. G., Fenton W. A., Horwich A. L. 1998; Structure and function in GroEL-mediated protein folding. Annu Rev Biochem 67:581–608
    [Google Scholar]
  72. Spector T. 1978; Refinement of the coomassie blue method of protein quantitation. A simple and linear spectrophotometric assay for less than or equal to 0.5 to 50 microgram of protein. Anal Biochem 86:142–146
    [Google Scholar]
  73. Stewart G. R., Wernisch L., Stabler R., Mangan J. A., Hinds J., Laing K. G., Young D. B., Butcher P. D. 2002; Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. Microbiology 148:3129–3138
    [Google Scholar]
  74. Tang Y. C., Chang H. C., Roeben A., Wischnewski D., Wischnewski N., Kerner M. J., Hartl F. U., Hayer-Hartl M. 2006; Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125:903–914
    [Google Scholar]
  75. Tanghe A., D'Souza S., Rosseels V., Denis O., Ottenhoff T. H., Dalemans W., Wheeler C., Huygen K. 2001; Improved immunogenicity and protective efficacy of a tuberculosis DNA vaccine encoding Ag85 by protein boosting. Infect Immun 69:3041–3047
    [Google Scholar]
  76. Thole J. E., van Schooten W. C., Keulen W. J., Hermans P. W., Janson A. A., de Vries R. R., Kolk A. H., van Embden J. D. 1988; Use of recombinant antigens expressed in Escherichia coli K-12 to map B-cell and T-cell epitopes on the immunodominant 65-kilodalton protein of Mycobacterium bovis BCG. Infect Immun 56:1633–1640
    [Google Scholar]
  77. van Eden W., Thole J. E., van der Zee R., Noordzij A., van Embden J. D., Hensen E. J., Cohen I. R. 1988; Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature 331:171–173
    [Google Scholar]
  78. van Eden W., Hogervorst E. J., van der Zee R., van Embden J. D., Hensen E. J., Cohen I. R. 1989; The mycobacterial 65 kD heat-shock protein and autoimmune arthritis. Rheumatol Int 9:187–191
    [Google Scholar]
  79. Veyron-Churlet R., Guerrini O., Mourey L., , Daffé M., Zerbib D. 2004; Protein–protein interactions within the fatty acid synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol Microbiol 54:1161–1172
    [Google Scholar]
  80. Voskuil M. I., Schnappinger D., Visconti K. C., Harrell M. I., Dolganov G. M., Sherman D. R., Schoolnik G. K. 2003; Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. J Exp Med 198:705–713
    [Google Scholar]
  81. Xu Z., Horwich A. L., Sigler P. B. 1997; The crystal structure of the asymmetric GroEL–GroES–(ADP)7 chaperonin complex. Nature 388:741–750
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045120-0
Loading
/content/journal/micro/10.1099/mic.0.045120-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error