1887

Abstract

Here, we report the identification and functional characterization of the 1912 gene , which encodes a GntR-like regulator of the YtrA subfamily. Disruption of arrested sporulation and antibiotic production in . The results of and studies revealed that the ABC transporter genes are targets of LndYR repressive action. In M145, overexpression caused a significant increase in the amount of extracellular actinorhodin. We suggest that controls the transcription of transport system genes in response to an as-yet-unidentified signal. Features that distinguish -based regulation from other known regulators are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045088-0
2011-04-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1240.html?itemId=/content/journal/micro/10.1099/mic.0.045088-0&mimeType=html&fmt=ahah

References

  1. Anisimova, M. & Gascuel, O. ( 2006; ). Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55, 539–552.[CrossRef]
    [Google Scholar]
  2. Bentley, S. D., Chater, K. F., Cerdeño-Tárraga, A. M., Challis, G. L., Thomson, N. R., James, K. D., Harris, D. E., Quail, M. A., Kieser, H. & other authors ( 2002; ). Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147.[CrossRef]
    [Google Scholar]
  3. Dereeper, A., Guignon, V., Blanc, G., Audic, S., Buffet, S., Chevenet, F., Dufayard, J. F., Guindon, S., Lefort, V. & other authors ( 2008; ). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36, W465–W469.[CrossRef]
    [Google Scholar]
  4. Dutko, L., Rebets, Y., Ostash, B., Luzhetskyy, A., Bechthold, A., Nakamura, T. & Fedorenko, V. ( 2006; ). A putative proteinase gene is involved in regulation of landomycin E biosynthesis in Streptomyces globisporus 1912. FEMS Microbiol Lett 255, 280–285.[CrossRef]
    [Google Scholar]
  5. Evans, C. G. T., Herbert, D. & Tempest, D. W. ( 1970; ). The continuous culture of microorganisms. Construction of a chemostat. In Methods in Microbiology, vol. 2, pp. 277–327. Edited by Norris, J. R. & Ribbons, D. W.. London, UK. : Academic Press.
    [Google Scholar]
  6. Fedorenko, V., Basiliya, L., Pankevych, K., Dubitska, L., Ostash, B., Luzhetskyy, A., Gromyko, O. & Krugel, H. ( 2000; ). Genetic control of antitumor antibiotics-polyketides by actinomycetes. Bull Inst Agric Microbiol 8, 27–31.
    [Google Scholar]
  7. Flärdh, K. & Buttner, M. J. ( 2009; ). Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7, 36–49.[CrossRef]
    [Google Scholar]
  8. Hillerich, B. & Westpheling, J. ( 2006; ). A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol 188, 7477–7487.[CrossRef]
    [Google Scholar]
  9. Hoskisson, P. A. & Rigali, S. ( 2009; ). Chapter 1: variation in form and function the helix-turn-helix regulators of the GntR superfamily. Adv Appl Microbiol 69, 1–22.
    [Google Scholar]
  10. Hoskisson, P. A., Rigali, S., Fowler, K., Findlay, K. C. & Buttner, M. J. ( 2006; ). DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J Bacteriol 188, 5014–5023.[CrossRef]
    [Google Scholar]
  11. Ishikawa, J. & Hotta, K. ( 1999; ). FramePlot: a new implementation of the frame analysis for predicting protein-coding regions in bacterial DNA with a high G+C content. FEMS Microbiol Lett 174, 251–253.[CrossRef]
    [Google Scholar]
  12. Ishizuka, H., Horinouchi, S., Kieser, H. M., Hopwood, D. A. & Beppu, T. ( 1992; ). A putative two-component regulatory system involved in secondary metabolism in Streptomyces spp. J Bacteriol 174, 7585–7594.
    [Google Scholar]
  13. Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. ( 2000; ). Practical streptomyces genetics. Norwich, UK. : The John Innes Foundation.
    [Google Scholar]
  14. Livak, K. J. & Schmittgen, T. D. ( 2001; ). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔ C T) method. Methods 25, 402–408.[CrossRef]
    [Google Scholar]
  15. Luzhetskiĭ, A. N., Ostash, B. E. & Fedorenko, V. A. ( 2001; ). [Intergeneric conjugation of Escherichia coliStreptomyces globisporus 1912 using integrative plasmid pSET152 and its derivatives]. Genetika 37, 1340–1347 (in Russian).
    [Google Scholar]
  16. Makitrynskyy, R., Rebets, Y., Ostash, B., Zaburannyi, N., Rabyk, M., Walker, S. & Fedorenko, V. ( 2010; ). Genetic factors that influence moenomycin production in streptomycetes. J Ind Microbiol Biotechnol 37, 559–566.[CrossRef]
    [Google Scholar]
  17. McKenzie, N. L. & Nodwell, J. R. ( 2007; ). Phosphorylated AbsA2 negatively regulates antibiotic production in Streptomyces coelicolor through interactions with pathway-specific regulatory gene promoters. J Bacteriol 189, 5284–5292.[CrossRef]
    [Google Scholar]
  18. Méndez, C. & Salas, J. A. ( 2001; ). The role of ABC transporters in antibiotic-producing organisms: drug secretion and resistance mechanisms. Res Microbiol 152, 341–350.[CrossRef]
    [Google Scholar]
  19. Myronovskyy, M., Ostash, B., Ostash, I. & Fedorenko, V. ( 2009; ). A gene cloning system for the siomycin producer Streptomyces sioyaensis NRRL-B5408. Folia Microbiol (Praha) 54, 91–96.[CrossRef]
    [Google Scholar]
  20. Nett, M., Ikeda, H. & Moore, B. S. ( 2009; ). Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat Prod Rep 26, 1362–1384.[CrossRef]
    [Google Scholar]
  21. Ostash, B., Saghatelin, A. & Walker, S. ( 2007; ). A streamlined metabolic pathway for the biosynthesis of moenomycin A. Chem Biol 14, 257–267.[CrossRef]
    [Google Scholar]
  22. Ostash, I., Ostash, B., Walker, S. & Fedorenko, V. ( 2007; ). Proton-dependent transporter gene lndJ confers resistance to landomycin E in Streptomyces globisporus. Genetika 43, 1032–1037.
    [Google Scholar]
  23. Ostash, I., Rebets, Y., Ostash, B., Kobylyanskyy, A., Myronovskyy, M., Nakamura, T., Walker, S. & Fedorenko, V. ( 2008; ). An ABC transporter encoding gene lndW confers resistance to landomycin E. Arch Microbiol 190, 105–109.[CrossRef]
    [Google Scholar]
  24. Ostash, B., Korynevska, A., Stoika, R. & Fedorenko, V. ( 2009; ). Chemistry and biology of landomycins, an expanding family of polyketide natural products. Mini Rev Med Chem 9, 1040–1051.[CrossRef]
    [Google Scholar]
  25. Prentki, P. & Krisch, H. M. ( 1984; ). In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29, 303–313.[CrossRef]
    [Google Scholar]
  26. Rebets, Y., Ostash, B., Luzhetskyy, A., Hoffmeister, D., Brana, A., Mendez, C., Salas, J. A., Bechthold, A. & Fedorenko, V. ( 2003; ). Production of landomycins in Streptomyces globisporus 1912 and S. cyanogenus S136 is regulated by genes encoding putative transcriptional activators. FEMS Microbiol Lett 222, 149–153.[CrossRef]
    [Google Scholar]
  27. Rebets, Y., Ostash, B., Luzhetskyy, A., Kushnir, S., Fukuhara, M., Bechthold, A., Nashimoto, M., Nakamura, T. & Fedorenko, V. ( 2005; ). DNA-binding activity of LndI protein and temporal expression of the gene that upregulates landomycin E production in Streptomyces globisporus 1912. Microbiology 151, 281–290.[CrossRef]
    [Google Scholar]
  28. Rigali, S., Derouaux, A., Giannotta, F. & Dusart, J. ( 2002; ). Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem 277, 12507–12515.[CrossRef]
    [Google Scholar]
  29. Rigali, S., Schlicht, M., Hoskisson, P., Nothaft, H., Merzbacher, M., Joris, B. & Titgemeyer, F. ( 2004; ). Extending the classification of bacterial transcription factors beyond the helix-turn-helix motif as an alternative approach to discover new cis/trans relationships. Nucleic Acids Res 32, 3418–3426.[CrossRef]
    [Google Scholar]
  30. Rigali, S., Nothaft, H., Noens, E. E., Schlicht, M., Colson, S., Müller, M., Joris, B., Koerten, H. K., Hopwood, D. A. & other authors ( 2006; ). The sugar phosphotransferase system of Streptomyces coelicolor is regulated by the GntR-family regulator DasR and links N-acetylglucosamine metabolism to the control of development. Mol Microbiol 61, 1237–1251.[CrossRef]
    [Google Scholar]
  31. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  32. Sezonov, G., Possoz, C., Friedmann, A., Pernodet, J. L. & Guérineau, M. ( 2000; ). KorSA from the Streptomyces integrative element pSAM2 is a central transcriptional repressor: target genes and binding sites. J Bacteriol 182, 1243–1250.[CrossRef]
    [Google Scholar]
  33. Shirling, E. B. & Gottlieb, D. ( 1966; ). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16, 313–340.[CrossRef]
    [Google Scholar]
  34. Sun, J., Hesketh, A. & Bibb, M. ( 2001; ). Functional analysis of relA and rshA, two relA/spoT homologues of Streptomyces coelicolor A3(2). J Bacteriol 183, 3488–3498.[CrossRef]
    [Google Scholar]
  35. Vomastek, T., Nádvorník, R., Janecek, J., Techniková, Z., Weiser, J. & Branny, P. ( 1998; ). Characterisation of two putative protein Ser/Thr kinases from actinomycete Streptomyces granaticolor both endowed with different properties. Eur J Biochem 257, 55–61.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045088-0
Loading
/content/journal/micro/10.1099/mic.0.045088-0
Loading

Data & Media loading...

Supplements

vol. , part 4, pp. 1240 - 1249

Control DNA shift assays of LndYR. Maximum-likelihood tree showing the relationships within a set of selected LndYR homologues found in completely or partially sequenced streptomycete genomes. Lawns of parent (1912) and -deficient (YR) strains after 10 days of growth on agar plates containing Bennet, minimal media supplemented with either glucose or mannitol, MS or R2YE. Semiquantitative RT-PCR analysis of selected genes in YR strain and parental strain 1912 grown in R5A (3 days). DNA shift assay in presence of increasing amounts of LndYR Purification of His-tagged LndYR. Defining the LndYR -acting element. Patches of strains M145-YR and control M145 strains grown on MMGT after 2–6 days (Fig. S8) or on R2YE after 3–6 days (Fig. S9) of incubation. Lawns of strains M145-YR and control M145 strains grown for 7 days on complete, carbon-limited, phosphate-limited and nitrogen-limited Evans media. Primary data from the qPCR analysis of and expression. All figures and the table are available as a single PDF(1.2 MB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error