1887

Abstract

The transcriptional activation response relies on a repertoire of transcriptional activators, which decipher regulatory information through their specific binding to cognate sequences, and their capacity to selectively recruit the components that constitute a given transcriptional complex. We have addressed the possibility of achieving novel transcriptional responses by the construction of a new transcriptional regulator – the Hap2-3-5-Gln3 hybrid modulator – harbouring the HAP complex polypeptides that constitute the DNA-binding domain (Hap2-3-5) and the Gln3 activation domain, which usually act in an uncombined fashion. The results presented in this paper show that transcriptional activation of and under repressive nitrogen conditions is achieved through the action of the novel Hap2-3-5-Gln3 transcriptional regulator. We propose that the combination of the Hap DNA-binding and Gln3 activation domains results in a hybrid modulator that elicits a novel transcriptional response not evoked when these modulators act independently.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044974-0
2011-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/879.html?itemId=/content/journal/micro/10.1099/mic.0.044974-0&mimeType=html&fmt=ahah

References

  1. Avendaño A., Riego L., DeLuna A., Aranda C., Romero G., Ishida C., Vázquez-Acevedo M., Rodarte B., Recillas-Targa F. other authors 2005; Swi/SNF-GCN5 -dependent chromatin remodelling determines induced expression of GDH3 , one of the paralogous genes responsible for ammonium assimilation and glutamate biosynthesis in Saccharomyces cerevisiae . Mol Microbiol 57:291–305
    [Google Scholar]
  2. Beck T., Hall M. N. 1999; The TOR signaling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692
    [Google Scholar]
  3. Blinder D., Magasanik B. 1995; Recognition of nitrogen-responsive upstream activation sequences of Saccharomyces cerevisiae by the product of the GLN3 gene. J Bacteriol 177:4190–4193
    [Google Scholar]
  4. Cardenas M. E., Cutler N. S., Lorenz M. C., Di Como C. J., Heitman J. 1999; The TOR signaling cascade regulates gene expression in response to nutrients. Genes Dev 13:3271–3279
    [Google Scholar]
  5. Cliften P. F., Hillier L. W., Fulton L., Graves T., Miner T., Gish W. R., Waterson R. H., Johnston M. 2001; Surveying Saccharomyces genomes to identify functional elements by comparative DNA sequence analysis. Genome Res 11:1175–1186
    [Google Scholar]
  6. Coffman J. A., Rai R., Cooper T. G. 1995; Genetic evidence for Gln3p-independent, nitrogen catabolite repression-sensitive gene expression in Saccharomyces cerevisiae . J Bacteriol 177:6910–6918
    [Google Scholar]
  7. Coffman J. A., Rai R., Cunningham T., Svetlov V., Cooper T. G. 1996; Gat1p, a GATA family protein whose production is sensitive to nitrogen catabolic repression participates in transcriptional activation of nitrogen catabolic genes in Saccharomyces cerevisiae . Mol Cell Biol 16:847–858
    [Google Scholar]
  8. Courchesne W. E., Magasanik B. 1988; Regulation of nitrogen assimilation in Saccharomyces cerevisiae : roles of the URE2 and GLN3 genes. J Bacteriol 170:708–713
    [Google Scholar]
  9. Crespo J. L., Daicho K., Ushimaru T., Hall M. N. 2001; The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae . J Biol Chem 276:34441–34444
    [Google Scholar]
  10. Dang V. D., Valens M., Bolotin-Fukuhara M., Daignan-Fournier B. A. 1994; Genetic screen to isolate genes regulated by the yeast CCAAT-box binding protein Hap2p. Yeast 10:1273–1283
    [Google Scholar]
  11. Dang V. D., Bohn C., Bolotin-Fukuhara M., Daignan-Fournier B. A. 1996a; The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae , defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178:1842–1849
    [Google Scholar]
  12. Dang V. D., Valens M., Bolotin-Fukuhara M., Daignan-Fournier B. A. 1996b; Cloning of the ASN1 and ASN2 genes encoding asparagine synthetases in Saccharomyces cerevisiae : differential regulation by the CCAAT-box-binding factor. Mol Microbiol 22:681–692
    [Google Scholar]
  13. Georis I., Feller A., Vierendeels F., Dubois E. 2009; The yeast GATA factor Gat1 occupies a central position in nitrogen catabolite repression-sensitive gene activation. Mol Cell Biol 29:3803–3815
    [Google Scholar]
  14. Goldstein A. L., McCusker J. H. 1999; Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae . Yeast 15:1541–1553
    [Google Scholar]
  15. González A., Membrillo-Hernandez J., Olivera H., Aranda C., Macino G., Ballario P. 1992; Cloning of a yeast gene coding for the glutamate synthase small subunit ( GUS2 ) by complementation of Saccharomyces cerevisiae and Escherichia coli glutamate auxotrophs. Mol Microbiol 6:301–308
    [Google Scholar]
  16. Hardwick J. S., Kuruvilla F. G., Tong J. K., Shamji A. F., Schreiber S. L. 1999; Rapamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins. Proc Natl Acad Sci U S A 96:14866–14870
    [Google Scholar]
  17. Hecht A., Laroche T., Strahl-Bolsinger S., Gasser S. M., Grunstein M. 1995; Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592
    [Google Scholar]
  18. Ishida C., Aranda C., Valenzuela L., Riego L., Deluna A., Recillas-Targa F., Filetici P., López-Revilla R., González A. 2006; The UGA3–GLT1 intergenic region constitutes a promoter whose bidirectional nature is determined by chromatin organization in Saccharomyces cerevisiae . Mol Microbiol 59:1790–1806
    [Google Scholar]
  19. Ito H., Fukuda Y., Murata K., Kimura A. 1983; Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168
    [Google Scholar]
  20. Kellis M., Patterson N., Endrizzi M., Birren B., Lander E. S. 2003; Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423:241–254
    [Google Scholar]
  21. Litzka O., Then Bergh K., Brakhage A. A. 1996; The Aspergillus nidulans penicillin-biosynthesis gene aat ( penDE ) is controlled by a CCAAT-containing DNA element. Eur J Biochem 238:675–682
    [Google Scholar]
  22. Longtine M. S., McKenzie A., Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., Pringle J. R. 1998; Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae . Yeast 14:953–961
    [Google Scholar]
  23. Magasanik B., Kaiser C. A. 2002; Nitrogen regulation in Saccharomyces cerevisiae . Gene 290:1–18
    [Google Scholar]
  24. Maity S. N., de Crombrugghe B. 1998; Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23:174–178
    [Google Scholar]
  25. McNabb D. S., Pinto I. 2005; Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA complex in Saccharomyces cerevisiae . Eukaryot Cell 4:1829–1839
    [Google Scholar]
  26. Minehart P. L., Magasanik B. 1991; Sequence and expression of GLN3 , a positive nitrogen regulatory gene of Saccharomyces cerevisiae encoding a protein with a putative zinc finger DNA-binding domain. Mol Cell Biol 11:6216–6228
    [Google Scholar]
  27. Olesen J., Hahn S., Guarente L. 1987; Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an independent manner. Cell 51:953–961
    [Google Scholar]
  28. Rai R., Genbauffe F., Lea H. Z., Cooper T. G. 1987; Transcriptional regulation of DAL5 gene in Saccharomyces cerevisiae . J Bacteriol 169:3521–3524
    [Google Scholar]
  29. Riego L., Avendano A., DeLuna A., Rodriguez E., Gonzalez A. 2002; GDH1 expression is regulated by GLN3 , GCN4 and HAP4 under respiratory growth. Biochem Biophys Res Commun 293:79–85
    [Google Scholar]
  30. Sosa E., Aranda C., Riego L., Valenzuela L., DeLuna A., Cantú J. M., González A. 2003; Gcn4 negatively regulates expression of genes subjected to nitrogen catabolite repression. Biochem Biophys Res Commun 310:1175–1180
    [Google Scholar]
  31. Stanbrough M., Rowen D. W., Magasanik B. 1995; Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc Natl Acad Sci U S A 92:9450–9454
    [Google Scholar]
  32. Storici F., Resnick M. A. 2003; Delitto perfetto targeted mutagenesis in yeast with oligonucleotides. Genet Eng (N Y) 25:189–207
    [Google Scholar]
  33. Struhl K., Davis R. W. 1981; Transcription of the his3 gene region in Saccharomyces cerevisiae . J Mol Biol 152:535–552
    [Google Scholar]
  34. Svetlov V. V., Cooper T. G. 1998; The Saccharomyces cerevisiae GATA factors Dal80p and Deh1p can form homo- and heterodimeric complexes. J Bacteriol 180:5682–5688
    [Google Scholar]
  35. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354
    [Google Scholar]
  36. Valenzuela L., Ballario P., Aranda C., Filetici P., González A. 1998; Regulation of expression of GLT1 , the gene encoding glutamate synthase in Saccharomyces cerevisiae . J Bacteriol 180:3533–3540
    [Google Scholar]
  37. Wach A., Brachat A., Alberti-Segui C., Rebischung C., Philippsen P. 1997; Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae . Yeast 13:1065–1075
    [Google Scholar]
  38. Zaman S., Lippman S. I., Zhao X., Broach J. R. 2008; How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044974-0
Loading
/content/journal/micro/10.1099/mic.0.044974-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error