1887

Abstract

is the leading cause of bacterial sepsis and meningitis in neonates and is also the causative agent of several serious infections in immunocompromised adults. encounters multiple niches during an infection, suggesting that regulatory mechanisms control the expression of specific virulence factors in this bacterium. The present study describes the functional characterization of a gene from , designated , which encodes a protein with significant similarity to members of the RofA-like protein (RALP) family of transcriptional regulators. After deletion of the gene in the genome of , the mutant strain exhibited significantly reduced expression of the genes and which encode a serine-rich repeat surface glycoprotein and a pilus protein, respectively, and moderately increased expression of the gene, which encodes a fibrinogen-binding protein. Electrophoretic mobility shift assays demonstrated specific DNA binding of purified Rga to the promoter regions of and , suggesting that Rga directly controls and . Adherence assays revealed significantly reduced binding of the Δ mutant to epithelial HEp-2 cells and to immobilized human keratin 4, respectively. In contrast, the adherence of the Δ mutant to A549 cells and its binding to human fibrinogen was significantly increased. Immunoblot and immunoelectron microscopy revealed that the quantity of pilus structures was significantly reduced in the Δ mutant compared with the parental strain. The wild-type phenotype could be restored by plasmid-mediated expression of , demonstrating that the mutant phenotypes resulted from a loss of Rga function.

Funding
This study was supported by the:
  • Institut National de la Recherche Agronomique (France)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044933-0
2011-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/8/2319.html?itemId=/content/journal/micro/10.1099/mic.0.044933-0&mimeType=html&fmt=ahah

References

  1. Abbot E. L., Smith W. D., Siou G. P., Chiriboga C., Smith R. J., Wilson J. A., Hirst B. H., Kehoe M. A. ( 2007). Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol 9:1822–1833 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. ( 1990). Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  4. Balter S., Whitney C. G., Schuchat A. ( 2000). Epidemiology of group B streptococcal infections. Gram-Positive Pathogens154–162 Fischetti V. A., Novick R. P., Ferretti J. J., Portnoy D. A., Rood J. I. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Beckert S., Kreikemeyer B., Podbielski A. ( 2001). Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect Immun 69:534–537 [View Article][PubMed]
    [Google Scholar]
  6. Dramsi S., Caliot E., Bonne I., Guadagnini S., Prévost M. C., Kojadinovic M., Lalioui L., Poyart C., Trieu-Cuot P. ( 2006). Assembly and role of pili in group B streptococci. Mol Microbiol 60:1401–1413 [View Article][PubMed]
    [Google Scholar]
  7. Fuchs E., Cleveland D. W. ( 1998). A structural scaffolding of intermediate filaments in health and disease. Science 279:514–519 [View Article][PubMed]
    [Google Scholar]
  8. Gianfaldoni C., Censini S., Hilleringmann M., Moschioni M., Facciotti C., Pansegrau W., Masignani V., Covacci A., Rappuoli R. et al. ( 2007). Streptococcus pneumoniae pilus subunits protect mice against lethal challenge. Infect Immun 75:1059–1062 [View Article][PubMed]
    [Google Scholar]
  9. Glaser P., Rusniok C., Buchrieser C., Chevalier F., Frangeul L., Msadek T., Zouine M., Couvé E., Lalioui L. et al. ( 2002). Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 45:1499–1513 [View Article][PubMed]
    [Google Scholar]
  10. Granok A. B., Parsonage D., Ross R. P., Caparon M. G. ( 2000). The RofA binding site in Streptococcus pyogenes is utilized in multiple transcriptional pathways. J Bacteriol 182:1529–1540 [View Article][PubMed]
    [Google Scholar]
  11. Gutekunst H., Eikmanns B. J., Reinscheid D. J. ( 2003). Analysis of RogB-controlled virulence mechanisms and gene repression in Streptococcus agalactiae . Infect Immun 71:5056–5064 [View Article][PubMed]
    [Google Scholar]
  12. Hava D. L., Hemsley C. J., Camilli A. ( 2003). Transcriptional regulation in the Streptococcus pneumoniae rlrA pathogenicity islet by RlrA. J Bacteriol 185:413–421 [View Article][PubMed]
    [Google Scholar]
  13. Jiang S. M., Cieslewicz M. J., Kasper D. L., Wessels M. R. ( 2005). Regulation of virulence by a two-component system in group B streptococcus. J Bacteriol 187:1105–1113 [View Article][PubMed]
    [Google Scholar]
  14. Keefe G. P. ( 1997). Streptococcus agalactiae mastitis: a review. Can Vet J 38:429–437[PubMed]
    [Google Scholar]
  15. Kreikemeyer B., McIver K. S., Podbielski A. ( 2003). Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol 11:224–232[PubMed] [CrossRef]
    [Google Scholar]
  16. Kwinn L. A., Khosravi A., Aziz R. K., Timmer A. M., Doran K. S., Kotb M., Nizet V. ( 2007). Genetic characterization and virulence role of the RALP3/LSA locus upstream of the streptolysin s operon in invasive M1T1 Group A Streptococcus. J Bacteriol 189:1322–1329 [View Article][PubMed]
    [Google Scholar]
  17. Lamy M. C., Zouine M., Fert J., Vergassola M., Couve E., Pellegrini E., Glaser P., Kunst F., Msadek T. et al. ( 2004). CovS/CovR of group B streptococcus: a two-component global regulatory system involved in virulence. Mol Microbiol 54:1250–1268 [View Article][PubMed]
    [Google Scholar]
  18. Lauer P., Rinaudo C. D., Soriani M., Margarit I., Maione D., Rosini R., Taddei A. R., Mora M., Rappuoli R. et al. ( 2005). Genome analysis reveals pili in Group B Streptococcus. Science 309:105 [View Article][PubMed]
    [Google Scholar]
  19. Maisey H. C., Hensler M., Nizet V., Doran K. S. ( 2007). Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J Bacteriol 189:1464–1467 [View Article][PubMed]
    [Google Scholar]
  20. Manetti A. G., Zingaretti C., Falugi F., Capo S., Bombaci M., Bagnoli F., Gambellini G., Bensi G., Mora M. et al. ( 2007). Streptococcus pyogenes pili promote pharyngeal cell adhesion and biofilm formation. Mol Microbiol 64:968–983 [View Article][PubMed]
    [Google Scholar]
  21. Marchler-Bauer A., Anderson J. B., Cherukuri P. F., DeWeese-Scott C., Geer L. Y., Gwadz M., He S., Hurwitz D. I., Jackson J. D. et al. ( 2005). CDD: a Conserved Domain Database for protein classification. Nucleic Acids Res 33:Database issueD192–D196 [View Article][PubMed]
    [Google Scholar]
  22. Mistou M. Y., Dramsi S., Brega S., Poyart C., Trieu-Cuot P. ( 2009). Molecular dissection of the secA2 locus of group B Streptococcus reveals that glycosylation of the Srr1 LPXTG protein is required for full virulence. J Bacteriol 191:4195–4206 [View Article][PubMed]
    [Google Scholar]
  23. Molinari G., Rohde M., Talay S. R., Chhatwal G. S., Beckert S., Podbielski A. ( 2001). The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol Microbiol 40:99–114 [View Article][PubMed]
    [Google Scholar]
  24. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. ( 1982). The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24 [View Article][PubMed]
    [Google Scholar]
  25. Mora M., Bensi G., Capo S., Falugi F., Zingaretti C., Manetti A. G., Maggi T., Taddei A. R., Grandi G., Telford J. L. ( 2005). Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A 102:15641–15646 [View Article][PubMed]
    [Google Scholar]
  26. Ofek I., Hasty D. L., Doyle R. J. ( 2003). Adhesion-dependent upregulation of bacterial genes. Bacterial Adhesion143–146 Ofek I., Hasty D. L., Doyle R. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  27. Podbielski A., Woischnik M., Leonard B. A., Schmidt K. H. ( 1999). Characterization of nra, a global negative regulator gene in group A streptococci. Mol Microbiol 31:1051–1064 [View Article][PubMed]
    [Google Scholar]
  28. Pospiech A., Neumann B. ( 1995). A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218 [View Article][PubMed]
    [Google Scholar]
  29. Rajagopal L., Clancy A., Rubens C. E. ( 2003). A eukaryotic type serine/threonine kinase and phosphatase in Streptococcus agalactiae reversibly phosphorylate an inorganic pyrophosphatase and affect growth, cell segregation, and virulence. J Biol Chem 278:14429–14441 [View Article][PubMed]
    [Google Scholar]
  30. Rajagopal L., Vo A., Silvestroni A., Rubens C. E. ( 2006). Regulation of cytotoxin expression by converging eukaryotic-type and two-component signalling mechanisms in Streptococcus agalactiae . Mol Microbiol 62:941–957 [View Article][PubMed]
    [Google Scholar]
  31. Rosini R., Rinaudo C. D., Soriani M., Lauer P., Mora M., Maione D., Taddei A., Santi I., Ghezzo C. et al. ( 2006). Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae . Mol Microbiol 61:126–141 [View Article][PubMed]
    [Google Scholar]
  32. Sambrook J., Russell D. W. ( 2001). Molecular cloning: a laboratory manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Samen U., Gottschalk B., Eikmanns B. J., Reinscheid D. J. ( 2004). Relevance of peptide uptake systems to the physiology and virulence of Streptococcus agalactiae . J Bacteriol 186:1398–1408 [View Article][PubMed]
    [Google Scholar]
  34. Samen U. M., Eikmanns B. J., Reinscheid D. J. ( 2006). The transcriptional regulator RovS controls the attachment of Streptococcus agalactiae to human epithelial cells and the expression of virulence genes. Infect Immun 74:5625–5635 [View Article][PubMed]
    [Google Scholar]
  35. Samen U., Eikmanns B. J., Reinscheid D. J., Borges F. ( 2007). The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infect Immun 75:5405–5414 [View Article][PubMed]
    [Google Scholar]
  36. Schubert A., Zakikhany K., Schreiner M., Frank R., Spellerberg B., Eikmanns B. J., Reinscheid D. J. ( 2002). A fibrinogen receptor from group B Streptococcus interacts with fibrinogen by repetitive units with novel ligand binding sites. Mol Microbiol 46:557–569 [View Article][PubMed]
    [Google Scholar]
  37. Schubert A., Zakikhany K., Pietrocola G., Meinke A., Speziale P., Eikmanns B. J., Reinscheid D. J. ( 2004). The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infect Immun 72:6197–6205 [View Article][PubMed]
    [Google Scholar]
  38. Scott J. R., Zähner D. ( 2006). Pili with strong attachments: Gram-positive bacteria do it differently. Mol Microbiol 62:320–330 [View Article][PubMed]
    [Google Scholar]
  39. Spellerberg B. ( 2000). Pathogenesis of neonatal Streptococcus agalactiae infections. Microbes Infect 2:1733–1742 [View Article][PubMed]
    [Google Scholar]
  40. Telford J. L., Barocchi M. A., Margarit I., Rappuoli R., Grandi G. ( 2006). Pili in Gram-positive pathogens. Nat Rev Microbiol 4:509–519 [View Article][PubMed]
    [Google Scholar]
  41. Trieu-Cuot P., Carlier C., Poyart-Salmeron C., Courvalin P. ( 1991). Shuttle vectors containing a multiple cloning site and a lacZα gene for conjugal transfer of DNA from Escherichia coli to gram-positive bacteria. Gene 102:99–104 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044933-0
Loading
/content/journal/micro/10.1099/mic.0.044933-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error