1887

Abstract

The genome of contains genes coding for the sigma factors RpoD, RpoN, RpoH1, RpoH2, RpoE1 and RpoE2. Previously published data show that is flagellated and that an mutant overexpresses the flagellar protein FlgE. In this study, we demonstrate that mutation of causes an overexpression of the flagellar genes , , , and , correlating with the production of a longer filament and thereby demonstrating that RpoE1 acts as a flagellar repressor. Moreover, mutation of increases the promoter activity of the flagellar master regulator , suggesting that RpoE1 acts upstream of Together, these data show that RpoE1 represses the flagellar synthesis and filament length in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044875-0
2011-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1263.html?itemId=/content/journal/micro/10.1099/mic.0.044875-0&mimeType=html&fmt=ahah

References

  1. Alvarez-Martinez C. E., Lourenço R. F., Baldini R. L., Laub M. T., Gomes S. L.. ( 2007;). The ECF sigma factor σT is involved in osmotic and oxidative stress responses in Caulobacter crescentus . Mol Microbiol66:1240–1255 [CrossRef][PubMed]
    [Google Scholar]
  2. Arora S. K., Ritchings B. W., Almira E. C., Lory S., Ramphal R.. ( 1997;). A transcriptional activator, FleQ, regulates mucin adhesion and flagellar gene expression in Pseudomonas aeruginosa in a cascade manner. J Bacteriol179:5574–5581[PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1991;). Current Protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  4. Correa N. E., Barker J. R., Klose K. E.. ( 2004;). The Vibrio cholerae FlgM homologue is an anti-σ28 factor that is secreted through the sheathed polar flagellum. J Bacteriol186:4613–4619 [CrossRef][PubMed]
    [Google Scholar]
  5. Delory M., Hallez R., Letesson J. J., De Bolle X.. ( 2006;). An RpoH-like heat shock sigma factor is involved in stress response and virulence in Brucella melitensis 16M. J Bacteriol188:7707–7710 [CrossRef][PubMed]
    [Google Scholar]
  6. Ferooz J., Letesson J. J.. ( 2010;). Morphological analysis of the sheathed flagellum of Brucella melitensis . BMC Res Notes3:333 [CrossRef][PubMed]
    [Google Scholar]
  7. Ferooz J., Lemaire J., Letesson J.-J.. ( 2011;). Role of FlbT in flagellin production in Brucella melitensis . . Microbiology157:1253–1262[CrossRef]
    [Google Scholar]
  8. Francez-Charlot A., Frunzke J., Reichen C., Ebneter J. Z., Gourion B., Vorholt J. A.. ( 2009;). Sigma factor mimicry involved in regulation of general stress response. Proc Natl Acad Sci U S A106:3467–3472 [CrossRef][PubMed]
    [Google Scholar]
  9. Fretin D., Fauconnier A., Köhler S., Halling S., Léonard S., Nijskens C., Ferooz J., Lestrate P., Delrue R. M. et al. ( 2005;). The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. Cell Microbiol7:687–698 [CrossRef][PubMed]
    [Google Scholar]
  10. Garrett E. S., Perlegas D., Wozniak D. J.. ( 1999;). Negative control of flagellum synthesis in Pseudomonas aeruginosa is modulated by the alternative sigma factor AlgT (AlgU). J Bacteriol181:7401–7404[PubMed]
    [Google Scholar]
  11. Gourion B., Sulser S., Frunzke J., Francez-Charlot A., Stiefel P., Pessi G., Vorholt J. A., Fischer H. M.. ( 2009;). The PhyR-σ (EcfG) signalling cascade is involved in stress response and symbiotic efficiency in Bradyrhizobium japonicum . Mol Microbiol73:291–305 [CrossRef][PubMed]
    [Google Scholar]
  12. Léonard S., Ferooz J., Haine V., Danese I., Fretin D., Tibor A., de Walque S., De Bolle X., Letesson J. J.. ( 2007;). FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae . J Bacteriol189:131–141 [CrossRef][PubMed]
    [Google Scholar]
  13. Macnab R. M.. ( 1999;). The bacterial flagellum: reversible rotary propellor and type III export apparatus. J Bacteriol181:7149–7153[PubMed]
    [Google Scholar]
  14. Martínez-Salazar J. M., Salazar E., Encarnación S., Ramírez-Romero M. A., Rivera J.. ( 2009;). Role of the extracytoplasmic function sigma factor RpoE4 in oxidative and osmotic stress responses in Rhizobium etli . J Bacteriol191:4122–4132 [CrossRef][PubMed]
    [Google Scholar]
  15. Minamino T., Imada K., Namba K.. ( 2008;). Mechanisms of type III protein export for bacterial flagellar assembly. Mol Biosyst4:1105–1115 [CrossRef][PubMed]
    [Google Scholar]
  16. Rhodius V. A., Suh W. C., Nonaka G., West J., Gross C. A.. ( 2006;). Conserved and variable functions of the σE stress response in related genomes. PLoS Biol4:e2 [CrossRef][PubMed]
    [Google Scholar]
  17. Sauviac L., Philippe H., Phok K., Bruand C.. ( 2007;). An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti . J Bacteriol189:4204–4216 [CrossRef][PubMed]
    [Google Scholar]
  18. Simon P., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Biotechnology (N Y)1:784–791 [CrossRef]
    [Google Scholar]
  19. Smith T. G., Hoover T. R.. ( 2009;). Deciphering bacterial flagellar gene regulatory networks in the genomic era. Adv Appl Microbiol67:257–295 [CrossRef][PubMed]
    [Google Scholar]
  20. Tart A. H., Wolfgang M. C., Wozniak D. J.. ( 2005;). The alternative sigma factor AlgT represses Pseudomonas aeruginosa flagellum biosynthesis by inhibiting expression of fleQ . J Bacteriol187:7955–7962 [CrossRef][PubMed]
    [Google Scholar]
  21. Tart A. H., Blanks M. J., Wozniak D. J.. ( 2006;). The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile Pseudomonas aeruginosa cystic fibrosis isolates. J Bacteriol188:6483–6489 [CrossRef][PubMed]
    [Google Scholar]
  22. Thomas-Chollier M., Sand O., Turatsinze J. V., Janky R., Defrance M., Vervisch E., Brohée S., van Helden J.. ( 2008;). RSAT: regulatory sequence analysis tools. Nucleic Acids Res36:W119–W127 [CrossRef][PubMed]
    [Google Scholar]
  23. Turatsinze J. V., Thomas-Chollier M., Defrance M., van Helden J.. ( 2008;). Using RSAT to scan genome sequences for transcription factor binding sites and cis-regulatory modules. Nat Protoc3:1578–1588 [CrossRef][PubMed]
    [Google Scholar]
  24. Uzureau S., Lemaire J., Delaive E., Dieu M., Gaigneaux A., Raes M., De Bolle X., Letesson J. J.. ( 2010;). Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. J Proteome Res9:3200–3217 [CrossRef][PubMed]
    [Google Scholar]
  25. Wösten M. M., van Dijk L., Veenendaal A. K., de Zoete M. R., Bleumink-Pluijm N. M., van Putten J. P.. ( 2010;). Temperature-dependent FlgM/FliA complex formation regulates Campylobacter jejuni flagella length. Mol Microbiol75:1577–1591 [CrossRef][PubMed]
    [Google Scholar]
  26. Zygmunt M. S., Hagius S. D., Walker J. V., Elzer P. H.. ( 2006;). Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. Microbes Infect8:2849–2854 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044875-0
Loading
/content/journal/micro/10.1099/mic.0.044875-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error