1887

Abstract

It was recently demonstrated that the pathogen produces a polar sheathed flagellum under the control of the master regulator FtcR. However, the regulatory mechanism controlling the flagellar assembly remains unknown. In this work, we investigate the flagellar hierarchy of as well as the flagellin FliC regulation. We show that a mutation in or (coding for the basal body structure and the hook, respectively) does not affect FliC synthesis, suggesting that production of FliC does not depend on the flagellar assembly. We demonstrate that FlbT is a FliC activator since inactivation of causes a decrease in expression by using a translational reporter construct. Moreover, the quantitative real-time PCR and Western blot analysis show a marked decrease in mRNA and FliC protein level, respectively. Conversely, the wild-type strain overexpressing fails to produce FliC, suggesting an opposite function. Interestingly, the expression of the gene in an or an mutant restores FliC production, demonstrating that FlbT plays a regulatory checkpoint role in FliC synthesis. This mechanism could be conserved in the since complementation of an or an mutant with from restores FliC synthesis.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044867-0
2011-05-01
2019-12-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1253.html?itemId=/content/journal/micro/10.1099/mic.0.044867-0&mimeType=html&fmt=ahah

References

  1. Aldridge P., Hughes K. T.. ( 2002;). Regulation of flagellar assembly. . Curr Opin Microbiol 5:, 160–165. [CrossRef][PubMed]
    [Google Scholar]
  2. Aldridge P., Gnerer J., Karlinsey J. E., Hughes K. T.. ( 2006;). Transcriptional and translational control of the Salmonella fliC gene. . J Bacteriol 188:, 4487–4496. [CrossRef][PubMed]
    [Google Scholar]
  3. Anderson P. E., Gober J. W.. ( 2000;). FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5′ untranslated region of flagellin mRNA. . Mol Microbiol 38:, 41–52. [CrossRef][PubMed]
    [Google Scholar]
  4. Anderson D. K., Newton A.. ( 1997;). Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint. . J Bacteriol 179:, 2281–2288.[PubMed]
    [Google Scholar]
  5. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 1991;). Current Protocols in Molecular Biology. New York:: Wiley;.
    [Google Scholar]
  6. Bahlawane C., McIntosh M., Krol E., Becker A.. ( 2008;). Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility. . Mol Plant Microbe Interact 21:, 1498–1509. [CrossRef][PubMed]
    [Google Scholar]
  7. Batut J., Andersson S. G., O’Callaghan D.. ( 2004;). The evolution of chronic infection strategies in the alpha-proteobacteria. . Nat Rev Microbiol 2:, 933–945. [CrossRef][PubMed]
    [Google Scholar]
  8. Belas R., Horikawa E., Aizawa S., Suvanasuthi R.. ( 2009;). Genetic determinants of Silicibacter sp. TM1040 motility. . J Bacteriol 191:, 4502–4512. [CrossRef][PubMed]
    [Google Scholar]
  9. Brown J. D., Saini S., Aldridge C., Herbert J., Rao C. V., Aldridge P. D.. ( 2008;). The rate of protein secretion dictates the temporal dynamics of flagellar gene expression. . Mol Microbiol 70:, 924–937.[PubMed]
    [Google Scholar]
  10. Chadsey M. S., Hughes K. T.. ( 2001;). A multipartite interaction between Salmonella transcription factor σ28 and its anti-sigma factor FlgM: implications for σ28 holoenzyme destabilization through stepwise binding. . J Mol Biol 306:, 915–929. [CrossRef][PubMed]
    [Google Scholar]
  11. Chevance F. F., Hughes K. T.. ( 2008;). Coordinating assembly of a bacterial macromolecular machine. . Nat Rev Microbiol 6:, 455–465. [CrossRef][PubMed]
    [Google Scholar]
  12. Chilcott G. S., Hughes K. T.. ( 2000;). Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. . Microbiol Mol Biol Rev 64:, 694–708. [CrossRef][PubMed]
    [Google Scholar]
  13. Delrue R. M., Deschamps C., Léonard S., Nijskens C., Danese I., Schaus J. M., Bonnot S., Ferooz J., Tibor A. et al. ( 2005;). A quorum-sensing regulator controls expression of both the type IV secretion system and the flagellar apparatus of Brucella melitensis. . Cell Microbiol 7:, 1151–1161. [CrossRef][PubMed]
    [Google Scholar]
  14. Douillard F. P., Ryan K. A., Caly D. L., Hinds J., Witney A. A., Husain S. E., O’Toole P. W.. ( 2008;). Posttranscriptional regulation of flagellin synthesis in Helicobacter pylori by the RpoN chaperone HP0958. . J Bacteriol 190:, 7975–7984. [CrossRef][PubMed]
    [Google Scholar]
  15. Douillard F. P., Ryan K. A., Hinds J., O’Toole P. W.. ( 2009;). Effect of FliK mutation on the transcriptional activity of the σ54 sigma factor RpoN in Helicobacter pylori. . Microbiology 155:, 1901–1911. [CrossRef][PubMed]
    [Google Scholar]
  16. Dozot M., Boigegrain R. A., Delrue R. M., Hallez R., Ouahrani-Bettache S., Danese I., Letesson J. J., De Bolle X., Köhler S.. ( 2006;). The stringent response mediator Rsh is required for Brucella melitensis and Brucella suis virulence, and for expression of the type IV secretion system virB. . Cell Microbiol 8:, 1791–1802. [CrossRef][PubMed]
    [Google Scholar]
  17. Dricot A., Rual J. F., Lamesch P., Bertin N., Dupuy D., Hao T., Lambert C., Hallez R., Delroisse J. M. et al. ( 2004;). Generation of the Brucella melitensis ORFeome version 1.1. . Genome Res 14: 10B2201–2206. [CrossRef][PubMed]
    [Google Scholar]
  18. Evinger M., Agabian N.. ( 1977;). Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. . J Bacteriol 132:, 294–301.[PubMed]
    [Google Scholar]
  19. Ferooz J., Letesson J. J.. ( 2010;). Morphological analysis of the sheathed flagellum of Brucella melitensis. . BMC Res Notes 3:, 333. [CrossRef][PubMed]
    [Google Scholar]
  20. Fretin D., Fauconnier A., Köhler S., Halling S., Léonard S., Nijskens C., Ferooz J., Lestrate P., Delrue R. M. et al. ( 2005;). The sheathed flagellum of Brucella melitensis is involved in persistence in a murine model of infection. . Cell Microbiol 7:, 687–698. [CrossRef][PubMed]
    [Google Scholar]
  21. Frye J., Karlinsey J. E., Felise H. R., Marzolf B., Dowidar N., McClelland M., Hughes K. T.. ( 2006;). Identification of new flagellar genes of Salmonella enterica serovar Typhimurium. . J Bacteriol 188:, 2233–2243. [CrossRef][PubMed]
    [Google Scholar]
  22. Haine V., Sinon A., Van Steen F., Rousseau S., Dozot M., Lestrate P., Lambert C., Letesson J. J., De Bolle X.. ( 2005;). Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. . Infect Immun 73:, 5578–5586. [CrossRef][PubMed]
    [Google Scholar]
  23. Hallez R., Letesson J. J., Vandenhaute J., De Bolle X.. ( 2007;). Gateway-based destination vectors for functional analyses of bacterial ORFeomes: application to the Min system in Brucella abortus. . Appl Environ Microbiol 73:, 1375–1379. [CrossRef][PubMed]
    [Google Scholar]
  24. Hellweg C., Pühler A., Weidner S.. ( 2009;). The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. . BMC Microbiol 9:, 37. [CrossRef][PubMed]
    [Google Scholar]
  25. Hoang H. H., Gurich N., González J. E.. ( 2008;). Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti. . J Bacteriol 190:, 861–871. [CrossRef][PubMed]
    [Google Scholar]
  26. Kalir S., McClure J., Pabbaraju K., Southward C., Ronen M., Leibler S., Surette M. G., Alon U.. ( 2001;). Ordering genes in a flagella pathway by analysis of expression kinetics from living bacteria. . Science 292:, 2080–2083. [CrossRef][PubMed]
    [Google Scholar]
  27. Kanbe M., Yagasaki J., Zehner S., Göttfert M., Aizawa S.. ( 2007;). Characterization of two sets of subpolar flagella in Bradyrhizobium japonicum. . J Bacteriol 189:, 1083–1089. [CrossRef][PubMed]
    [Google Scholar]
  28. Karlinsey J. E., Tanaka S., Bettenworth V., Yamaguchi S., Boos W., Aizawa S. I., Hughes K. T.. ( 2000;). Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. . Mol Microbiol 37:, 1220–1231. [CrossRef][PubMed]
    [Google Scholar]
  29. Kutsukake K., Ohya Y., Iino T.. ( 1990;). Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. . J Bacteriol 172:, 741–747.[PubMed]
    [Google Scholar]
  30. Léonard S., Ferooz J., Haine V., Danese I., Fretin D., Tibor A., de Walque S., De Bolle X., Letesson J. J.. ( 2007;). FtcR is a new master regulator of the flagellar system of Brucella melitensis 16M with homologs in Rhizobiaceae. . J Bacteriol 189:, 131–141. [CrossRef][PubMed]
    [Google Scholar]
  31. Letesson J. J., Lestrate P., Delrue R. M., Danese I., Bellefontaine F., Fretin D., Taminiau B., Tibor A., Dricot A., Deschamps C.. ( 2002;). Fun stories about Brucella: the “furtive nasty bug”. . Vet Microbiol 90:, 317–328. [CrossRef][PubMed]
    [Google Scholar]
  32. Llewellyn M., Dutton R. J., Easter J., O’Donnol D., Gober J. W.. ( 2005;). The conserved flaF gene has a critical role in coupling flagellin translation and assembly in Caulobacter crescentus. . Mol Microbiol 57:, 1127–1142. [CrossRef][PubMed]
    [Google Scholar]
  33. Macnab R. M.. ( 1996;). Flagella and motility. . In Escherichia coli and Salmonella. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  34. Mangan E. K., Malakooti J., Caballero A., Anderson P., Ely B., Gober J. W.. ( 1999;). FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. . J Bacteriol 181:, 6160–6170.[PubMed]
    [Google Scholar]
  35. McCarter L. L.. ( 2006;). Regulation of flagella. . Curr Opin Microbiol 9:, 180–186. [CrossRef][PubMed]
    [Google Scholar]
  36. Ménard R., Sansonetti P. J., Parsot C.. ( 1993;). Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. . J Bacteriol 175:, 5899–5906.[PubMed]
    [Google Scholar]
  37. Miller J. H.. ( 1972;). Assay for β-galactosidase. . In Experiments in Molecular Genetics, pp. 352–355. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  38. Pleier E., Schmitt R.. ( 1991;). Expression of two Rhizobium meliloti flagellin genes and their contribution to the complex filament structure. . J Bacteriol 173:, 2077–2085.[PubMed]
    [Google Scholar]
  39. Rambow-Larsen A. A., Rajashekara G., Petersen E., Splitter G.. ( 2008;). Putative quorum-sensing regulator BlxR of Brucella melitensis regulates virulence factors including the type IV secretion system and flagella. . J Bacteriol 190:, 3274–3282. [CrossRef][PubMed]
    [Google Scholar]
  40. Rosu V., Chevance F. F., Karlinsey J. E., Hirano T., Hughes K. T.. ( 2006;). Translation inhibition of the Salmonella fliC gene by the fliC 5′ untranslated region, fliC coding sequences, and FlgM. . J Bacteriol 188:, 4497–4507. [CrossRef][PubMed]
    [Google Scholar]
  41. Rotter C., Mühlbacher S., Salamon D., Schmitt R., Scharf B.. ( 2006;). Rem, a new transcriptional activator of motility and chemotaxis in Sinorhizobium meliloti. . J Bacteriol 188:, 6932–6942. [CrossRef][PubMed]
    [Google Scholar]
  42. Ryan K. A., Karim N., Worku M., Penn C. W., O’Toole P. W.. ( 2005;). Helicobacter pylori flagellar hook-filament transition is controlled by a FliK functional homolog encoded by the gene HP0906. . J Bacteriol 187:, 5742–5750. [CrossRef][PubMed]
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  44. Scharf B., Schuster-Wolff-Bühring H., Rachel R., Schmitt R.. ( 2001;). Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: importance of flagellin A for flagellar filament structure and transcriptional regulation. . J Bacteriol 183:, 5334–5342. [CrossRef][PubMed]
    [Google Scholar]
  45. Simon P., Priefer U., Pühler A.. ( 1983;). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. . Biotechnology (N Y) 1:, 784–791. [CrossRef]
    [Google Scholar]
  46. Sourjik V., Sterr W., Platzer J., Bos I., Haslbeck M., Schmitt R.. ( 1998;). Mapping of 41 chemotaxis, flagellar and motility genes to a single region of the Sinorhizobium meliloti chromosome. . Gene 223:, 283–290. [CrossRef][PubMed]
    [Google Scholar]
  47. Sourjik V., Muschler P., Scharf B., Schmitt R.. ( 2000;). VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti. . J Bacteriol 182:, 782–788. [CrossRef][PubMed]
    [Google Scholar]
  48. Soutourina O. A., Bertin P. N.. ( 2003;). Regulation cascade of flagellar expression in Gram-negative bacteria. . FEMS Microbiol Rev 27:, 505–523. [CrossRef][PubMed]
    [Google Scholar]
  49. Ugalde R. A.. ( 1999;). Intracellular lifestyle of Brucella spp. Common genes with other animal pathogens, plant pathogens, and endosymbionts. . Microbes Infect 1:, 1211–1219. [CrossRef][PubMed]
    [Google Scholar]
  50. Uzureau S., Lemaire J., Delaive E., Dieu M., Gaigneaux A., Raes M., De Bolle X., Letesson J. J.. ( 2010;). Global analysis of quorum sensing targets in the intracellular pathogen Brucella melitensis 16 M. . J Proteome Res 9:, 3200–3217. [CrossRef][PubMed]
    [Google Scholar]
  51. Zygmunt M. S., Hagius S. D., Walker J. V., Elzer P. H.. ( 2006;). Identification of Brucella melitensis 16M genes required for bacterial survival in the caprine host. . Microbes Infect 8:, 2849–2854. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044867-0
Loading
/content/journal/micro/10.1099/mic.0.044867-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error