1887

Abstract

HynSL from ‘deep ecotype’ (AltDE) is an oxygen-tolerant and thermostable [NiFe] hydrogenase. Its two structural genes (), encoding small and large hydrogenase subunits, are surrounded by eight genes (, and ) predicted to encode accessory proteins involved in maturation of the hydrogenase. A 13 kb fragment containing the ten structural and accessory genes along with three additional adjacent genes (, and ) was cloned into an IPTG-inducible expression vector and transferred into an mutant strain lacking its native hydrogenases. Upon induction, HynSL from AltDE was expressed in and was active, as determined by an hydrogen evolution assay. Subsequent genetic analysis revealed that , , and are not essential for assembling an active hydrogenase. However, and can enhance the activity of the heterologously expressed hydrogenase. We used this genetic system to compare maturation mechanisms between AltDE HynSL and its homologue. When the structural genes for the hydrogenase, , were expressed along with known accessory genes ( and ), no active hydrogenase was produced. Further, co-expression of AltDE accessory genes and with the entire set of the genes did not produce an active hydrogenase. However, co-expression of all AltDE accessory genes with the structural genes generated an active hydrogenase. This result demonstrates that the accessory genes from AltDE can complement their counterparts from and that the two hydrogenases share similar maturation mechanisms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044834-0
2011-05-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1363.html?itemId=/content/journal/micro/10.1099/mic.0.044834-0&mimeType=html&fmt=ahah

References

  1. Barrett E. L., Kwan H. S., Macy J.. ( 1984;). Anaerobiosis, formate, nitrate, and pyrA are involved in the regulation of formate hydrogenlyase in Salmonella typhimurium. . J Bacteriol 158:, 972–977.[PubMed]
    [Google Scholar]
  2. Báscones E., Imperial J., Ruiz-Argüeso T., Palacios J. M.. ( 2000;). Generation of new hydrogen-recycling Rhizobiaceae strains by introduction of a novel Hup minitransposon. . Appl Environ Microbiol 66:, 4292–4299. [CrossRef][PubMed]
    [Google Scholar]
  3. Benner S. A., Sismour A. M.. ( 2005;). Synthetic biology. . Nat Rev Genet 6:, 533–543. [CrossRef][PubMed]
    [Google Scholar]
  4. Bernhard M., Schwartz E., Rietdorf J., Friedrich B.. ( 1996;). The Alcaligenes eutrophus membrane-bound hydrogenase gene locus encodes functions involved in maturation and electron transport coupling. . J Bacteriol 178:, 4522–4529.[PubMed]
    [Google Scholar]
  5. Böck A., King P. W., Blokesch M., Posewitz M. C.. ( 2006;). Maturation of hydrogenases. . Adv Microb Physiol 51:, 1–71. [CrossRef][PubMed]
    [Google Scholar]
  6. Bogorov L. V.. ( 1974;). [The properties of Thiocapsa roseopersicina, strain BBS, isolated from an estuary of the White Sea]. . Mikrobiologiia 43:, 326–332 (in Russian).[PubMed]
    [Google Scholar]
  7. Casadaban M. J.. ( 1976;). Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. . J Mol Biol 104:, 541–555. [CrossRef][PubMed]
    [Google Scholar]
  8. Casalot L., Rousset M.. ( 2001;). Maturation of the [NiFe] hydrogenases. . Trends Microbiol 9:, 228–237. [CrossRef][PubMed]
    [Google Scholar]
  9. Elhai J., Wolk C. P.. ( 1988;). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. . Gene 68:, 119–138. [CrossRef][PubMed]
    [Google Scholar]
  10. Fodor B., Rákhely G., Kovács A. T., Kovács K. L.. ( 2001;). Transposon mutagenesis in purple sulfur photosynthetic bacteria: identification of hypF, encoding a protein capable of processing [NiFe] hydrogenases in alpha, beta, and gamma subdivisions of the proteobacteria. . Appl Environ Microbiol 67:, 2476–2483. [CrossRef][PubMed]
    [Google Scholar]
  11. Fontecilla-Camps J. C., Volbeda A., Cavazza C., Nicolet Y.. ( 2007;). Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. . Chem Rev 107:, 4273–4303. [CrossRef][PubMed]
    [Google Scholar]
  12. Forzi L., Sawers R. G.. ( 2007;). Maturation of [NiFe]-hydrogenases in Escherichia coli. . Biometals 20:, 565–578. [CrossRef][PubMed]
    [Google Scholar]
  13. Friedrich B., Friedrich C. G., Meyer M., Schlegel H. G.. ( 1984;). Expression of hydrogenase in Alcaligenes spp. is altered by interspecific plasmid exchange. . J Bacteriol 158:, 331–333.[PubMed]
    [Google Scholar]
  14. Gibson D. G., Young L., Chuang R. Y., Venter J. C., Hutchison C. A. III, Smith H. O.. ( 2009;). Enzymatic assembly of DNA molecules up to several hundred kilobases. . Nat Methods 6:, 343–345. [CrossRef][PubMed]
    [Google Scholar]
  15. Ivars-Martinez E., Martin-Cuadrado A.-B., D’Auria G., Mira A., Ferriera S., Johnson J., Friedman R., Rodriguez-Valera F.. ( 2008;). Comparative genomics of two ecotypes of the marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associated with different kinds of particulate organic matter. . ISME J 2:, 1194–1212. [CrossRef][PubMed]
    [Google Scholar]
  16. Kovács K. L., Tigyi G., Thanh L. T., Lakatos S., Kiss Z., Bagyinka C.. ( 1991;). Structural rearrangements in active and inactive forms of hydrogenase from Thiocapsa roseopersicina. . J Biol Chem 266:, 947–951.[PubMed]
    [Google Scholar]
  17. Kovács K. L., Fodor B., Kovács A. T., Csanádi G., Maróti G., Balogh J., Arvani S., Rákhely G.. ( 2002;). Hydrogenases, accessory genes and the regulation of [NiFe] hydrogenase biosynthesis in Thiocapsa roseopersicina. . Int J Hydrogen Energy 27:, 1463–1469. [CrossRef]
    [Google Scholar]
  18. Lenz O., Gleiche A., Strack A., Friedrich B.. ( 2005;). Requirements for heterologous production of a complex metalloenzyme: the membrane-bound [NiFe] hydrogenase. . J Bacteriol 187:, 6590–6595. [CrossRef][PubMed]
    [Google Scholar]
  19. López-López A., Bartual S. G., Stal L., Onyshchenko O., Rodríguez-Valera F.. ( 2005;). Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. . Environ Microbiol 7:, 649–659. [CrossRef][PubMed]
    [Google Scholar]
  20. Ludwig M., Schubert T., Zebger I., Wisitruangsakul N., Saggu M., Strack A., Lenz O., Hildebrandt P., Friedrich B.. ( 2009;). Concerted action of two novel auxiliary proteins in assembly of the active site in a membrane-bound [NiFe] hydrogenase. . J Biol Chem 284:, 2159–2168. [CrossRef][PubMed]
    [Google Scholar]
  21. Manyani H., Rey L., Palacios J. M., Imperial J., Ruiz-Argüeso T.. ( 2005;). Gene products of the hupGHIJ operon are involved in maturation of the iron-sulfur subunit of the [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae. . J Bacteriol 187:, 7018–7026. [CrossRef][PubMed]
    [Google Scholar]
  22. Maróti G., Fodor B. D., Rákhely G., Kovács A. T., Arvani S., Kovács K. L.. ( 2003;). Accessory proteins functioning selectively and pleiotropically in the biosynthesis of [NiFe] hydrogenases in Thiocapsa roseopersicina. . Eur J Biochem 270:, 2218–2227. [CrossRef][PubMed]
    [Google Scholar]
  23. Maróti G., Tong Y., Yooseph S., Baden-Tillson H., Smith H. O., Kovács K. L., Frazier M., Venter J. C., Xu Q.. ( 2009;). Discovery of [NiFe] hydrogenase genes in metagenomic DNA: cloning and heterologous expression in Thiocapsa roseopersicina. . Appl Environ Microbiol 75:, 5821–5830. [CrossRef][PubMed]
    [Google Scholar]
  24. Maróti G., Rákhely G., Maróti J., Dorogházi E., Klement E., Medzihradszky K. F., Kovács K. L.. ( 2010;). Specificity and selectivity of HypC chaperonins and endopeptidases in the molecular assembly machinery of [NiFe] hydrogenases of Thiocapsa roseopersicina. . Int J Hydrogen Energy 35:, 3358–3370. [CrossRef]
    [Google Scholar]
  25. Menon N. K., Robbins J., Wendt J. C., Shanmugam K. T., Przybyla A. E.. ( 1991;). Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. . J Bacteriol 173:, 4851–4861.[PubMed]
    [Google Scholar]
  26. Palágyi-Mészáros L. S., Maróti J., Latinovics D., Balogh T., Klement E., Medzihradszky K. F., Rákhely G., Kovács K. L.. ( 2009;). Electron-transfer subunits of the NiFe hydrogenases in Thiocapsa roseopersicina BBS. . FEBS J 276:, 164–174. [CrossRef][PubMed]
    [Google Scholar]
  27. Peters J. E., Thate T. E., Craig N. L.. ( 2003;). Definition of the Escherichia coli MC4100 genome by use of a DNA array. . J Bacteriol 185:, 2017–2021. [CrossRef][PubMed]
    [Google Scholar]
  28. Redwood M. D., Mikheenko I. P., Sargent F., Macaskie L. E.. ( 2008;). Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. . FEMS Microbiol Lett 278:, 48–55. [CrossRef][PubMed]
    [Google Scholar]
  29. Richard D. J., Sawers G., Sargent F., McWalter L., Boxer D. H.. ( 1999;). Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. . Microbiology 145:, 2903–2912.[PubMed]
    [Google Scholar]
  30. Rousset M., Magro V., Forget N., Guigliarelli B., Belaich J. P., Hatchikian E. C.. ( 1998;). Heterologous expression of the Desulfovibrio gigas [NiFe] hydrogenase in Desulfovibrio fructosovorans MR400. . J Bacteriol 180:, 4982–4986.[PubMed]
    [Google Scholar]
  31. Sambrook J., Russell D. W.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  32. Shirshikova G. N., Khusnutdinova A. N., Postnikova O. A., Patrusheva E. V., Butanaev A. M., Tsygankov A. A.. ( 2009;). Expression of Ni-Fe hydrogenase structural genes derived from Thiocapsa roseopersicina in Escherichia coli. . Dokl Biochem Biophys 425:, 124–126. [CrossRef][PubMed]
    [Google Scholar]
  33. Studier F. W.. ( 2005;). Protein production by auto-induction in high density shaking cultures. . Protein Expr Purif 41:, 207–234. [CrossRef][PubMed]
    [Google Scholar]
  34. Sun J., Hopkins R. C., Jenney F. E., McTernan P. M., Adams M. W.. ( 2010;). Heterologous expression and maturation of an NADP-dependent [NiFe]-hydrogenase: a key enzyme in biofuel production. . PLoS ONE 5:, e10526. [CrossRef][PubMed]
    [Google Scholar]
  35. Vargas W. A., Weyman P. D., Tong Y., Smith H. O., Xu Q.. ( 2011;). A [NiFe]-hydrogenase from Alteromonas macleodii with unusual stability in the presence of oxygen and high temperature. . Appl Environ Microbiol 77:, 1990–1998. [CrossRef][PubMed]
    [Google Scholar]
  36. Vasala A., Panula J., Bollók M., Illmann L., Hälsig C., Neubauer P.. ( 2006;). A new wireless system for decentralised measurement of physiological parameters from shake flasks. . Microb Cell Fact 5:, 8. [CrossRef][PubMed]
    [Google Scholar]
  37. Vignais P. M., Billoud B.. ( 2007;). Occurrence, classification, and biological function of hydrogenases: an overview. . Chem Rev 107:, 4206–4272. [CrossRef][PubMed]
    [Google Scholar]
  38. Xu Y., Mori T., Johnson C. H.. ( 2003;). Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. . EMBO J 22:, 2117–2126. [CrossRef][PubMed]
    [Google Scholar]
  39. Yagi K., Min H., Urushihara M., Manabe Y., Umeda F., Miura Y.. ( 1986;). Isolation of hydrogen-oxidation gene from Alcaligenes hydrogenophilus and its expression in Pseudomonas oxalaticus. . Biochem Biophys Res Commun 137:, 114–119. [CrossRef][PubMed]
    [Google Scholar]
  40. Zhang J. W., Butland G., Greenblatt J. F., Emili A., Zamble D. B.. ( 2005;). A role for SlyD in the Escherichia coli hydrogenase biosynthetic pathway. . J Biol Chem 280:, 4360–4366. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044834-0
Loading
/content/journal/micro/10.1099/mic.0.044834-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error