1887

Abstract

Bacteria acquire iron through a highly specific mechanism involving iron-chelating molecules termed siderophores. The Gram-negative bacterium can utilize siderophores produced by other micro-organisms to facilitate iron uptake. Here we show that a strain deficient in siderophore production can use the siderophore vibriobactin as an iron source. In addition, we identified a gene, PA4156 (), encoding a protein highly homologous to the vibriobactin receptor (ViuA). A mutant in the two endogenous siderophores (pyoverdine and pyochelin) and in was unable to utilize vibriobactin as an iron source. Additionally, preliminary analyses revealed the involvement of vibriobactin, Fur protein and an IclR-type regulator, FvbR (PA4157), in regulation.

Funding
This study was supported by the:
  • Israel Science Foundation (Award 366/07)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044768-0
2011-07-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/7/2172.html?itemId=/content/journal/micro/10.1099/mic.0.044768-0&mimeType=html&fmt=ahah

References

  1. Ankenbauer R. G., Quan H. N. ( 1994). FptA, the Fe(III)-pyochelin receptor of Pseudomonas aeruginosa: a phenolate siderophore receptor homologous to hydroxamate siderophore receptors. J Bacteriol 176:307–319[PubMed]
    [Google Scholar]
  2. Ankenbauer R., Hanne L. F., Cox C. D. ( 1986). Mapping of mutations in Pseudomonas aeruginosa defective in pyoverdin production. J Bacteriol 167:7–11[PubMed]
    [Google Scholar]
  3. Arias-Barrau E., Olivera E. R., Luengo J. M., Fernández C., Galán B., García J. L., Díaz E., Miñambres B. ( 2004). The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida . J Bacteriol 186:5062–5077 [View Article][PubMed]
    [Google Scholar]
  4. Banin E., Vasil M. L., Greenberg E. P. ( 2005). Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A 102:11076–11081 [View Article][PubMed]
    [Google Scholar]
  5. Beare P. A., For R. J., Martin L. W., Lamont I. L. ( 2003). Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Mol Microbiol 47:195–207 [View Article][PubMed]
    [Google Scholar]
  6. Bolotin A., Biro S. ( 1990). Nucleotide sequence of the putative regulatory gene and major promoter region of the Streptomyces griseus glycerol operon. Gene 87:151–152 [View Article][PubMed]
    [Google Scholar]
  7. Braun V., Hantke K. ( 2011). Recent insights into iron import by bacteria. Curr Opin Chem Biol 15:328–334 [View Article][PubMed]
    [Google Scholar]
  8. Braun V., Mahren S., Sauter A. ( 2005). Gene regulation by transmembrane signaling. Biometals 18:507–517 [View Article][PubMed]
    [Google Scholar]
  9. Choi K. H., Schweizer H. P. ( 2006). mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa . Nat Protoc 1:153–161 [View Article][PubMed]
    [Google Scholar]
  10. Chu B. C., Garcia-Herrero A., Johanson T. H., Krewulak K. D., Lau C. K., Peacock R. S., Slavinskaya Z., Vogel H. J. ( 2010). Siderophore uptake in bacteria and the battle for iron with the host; a bird's eye view. Biometals 23:601–611 [View Article][PubMed]
    [Google Scholar]
  11. Cornelis P., Matthijs S. ( 2002). Diversity of siderophore-mediated iron uptake systems in fluorescent pseudomonads: not only pyoverdines. Environ Microbiol 4:787–798 [View Article][PubMed]
    [Google Scholar]
  12. Cornelis P., Matthijs S., Van Oeffelen L. ( 2008). Iron uptake regulation in Pseudomonas aeruginosa . Biometals 22:15–22 [View Article][PubMed]
    [Google Scholar]
  13. Covarrubias L., Bolivar F. ( 1982). Construction and characterization of new cloning vehicles. VI. Plasmid pBR329, a new derivative of pBR328 lacking the 482-base-pair inverted duplication. Gene 17:79–89 [View Article][PubMed]
    [Google Scholar]
  14. Cox C. D. ( 1980). Iron uptake with ferripyochelin and ferric citrate by Pseudomonas aeruginosa . J Bacteriol 142:581–587[PubMed]
    [Google Scholar]
  15. Cox C. D., Adams P. ( 1985). Siderophore activity of pyoverdin for Pseudomonas aeruginosa . Infect Immun 48:130–138[PubMed]
    [Google Scholar]
  16. Cuív P. O., Clarke P., O'Connell M. ( 2006). Identification and characterization of an iron-regulated gene, chtA, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by Pseudomonas aeruginosa . Microbiology 152:945–954 [View Article][PubMed]
    [Google Scholar]
  17. Cunliffe H. E., Merriman T. R., Lamont I. L. ( 1995). Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. J Bacteriol 177:2744–2750[PubMed]
    [Google Scholar]
  18. de Lorenzo V., Timmis K. N. ( 1994). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405 [View Article][PubMed]
    [Google Scholar]
  19. Dean C. R., Poole K. ( 1993). Cloning and characterization of the ferric enterobactin receptor gene (pfeA) of Pseudomonas aeruginosa . J Bacteriol 175:317–324[PubMed]
    [Google Scholar]
  20. Escolar L., Pérez-Martín J., de Lorenzo V. ( 1999). Opening the iron box: transcriptional metalloregulation by the Fur protein. J Bacteriol 181:6223–6229[PubMed]
    [Google Scholar]
  21. Eulberg D., Schlömann M. ( 1998). The putative regulator of catechol catabolism in Rhodococcus opacus 1CP–an IclR-type, not a LysR-type transcriptional regulator. Antonie van Leeuwenhoek 74:71–82 [View Article][PubMed]
    [Google Scholar]
  22. Ghysels B., Ochsner U., Möllman U., Heinisch L., Vasil M., Cornelis P., Matthijs S. ( 2005). The Pseudomonas aeruginosa pirA gene encodes a second receptor for ferrienterobactin and synthetic catecholate analogues. FEMS Microbiol Lett 246:167–174 [View Article][PubMed]
    [Google Scholar]
  23. Griffiths G. L., Sigel S. P., Payne S. M., Neilands J. B. ( 1984). Vibriobactin, a siderophore from Vibrio cholerae . J Biol Chem 259:383–385[PubMed]
    [Google Scholar]
  24. Heinrichs D. E., Poole K. ( 1996). PchR, a regulator of ferripyochelin receptor gene (fptA) expression in Pseudomonas aeruginosa, functions both as an activator and as a repressor. J Bacteriol 178:2586–2592[PubMed]
    [Google Scholar]
  25. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. ( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  26. Hoang T. T., Kutchma A. J., Becher A., Schweizer H. P. ( 2000). Integration-proficient plasmids for Pseudomonas aeruginosa: site-specific integration and use for engineering of reporter and expression strains. Plasmid 43:59–72 [View Article][PubMed]
    [Google Scholar]
  27. Hoegy F., Lee X., Noel S., Rognan D., Mislin G. L., Reimmann C., Schalk I. J. ( 2009). Stereospecificity of the siderophore pyochelin outer membrane transporters in fluorescent pseudomonads. J Biol Chem 284:14949–14957 [View Article][PubMed]
    [Google Scholar]
  28. Holloway B. W., Krishnapillai V., Morgan A. F. ( 1979). Chromosomal genetics of Pseudomonas . Microbiol Rev 43:73–102[PubMed]
    [Google Scholar]
  29. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. ( 2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100:14339–14344 [View Article][PubMed]
    [Google Scholar]
  30. Leoni L., Ciervo A., Orsi N., Visca P. ( 1996). Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity. J Bacteriol 178:2299–2313[PubMed]
    [Google Scholar]
  31. Llamas M. A., Sparrius M., Kloet R., Jiménez C. R., Vandenbroucke-Grauls C., Bitter W. ( 2006). The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa . J Bacteriol 188:1882–1891 [View Article][PubMed]
    [Google Scholar]
  32. Llamas M. A., Mooij M. J., Sparrius M., Vandenbroucke-Grauls C. M., Ratledge C., Bitter W. ( 2008). Characterization of five novel Pseudomonas aeruginosa cell-surface signalling systems. Mol Microbiol 67:458–472 [View Article][PubMed]
    [Google Scholar]
  33. Lorca G. L., Ezersky A., Lunin V. V., Walker J. R., Altamentova S., Evdokimova E., Vedadi M., Bochkarev A., Savchenko A. ( 2007). Glyoxylate and pyruvate are antagonistic effectors of the Escherichia coli IclR transcriptional regulator. J Biol Chem 282:16476–16491 [View Article][PubMed]
    [Google Scholar]
  34. Meyer J. M. ( 1992). Exogenous siderophore-mediated iron uptake in Pseudomonas aeruginosa: possible involvement of porin OprF in iron translocation. J Gen Microbiol 138:951–958[PubMed] [CrossRef]
    [Google Scholar]
  35. Michel L., Bachelard A., Reimmann C. ( 2007). Ferripyochelin uptake genes are involved in pyochelin-mediated signalling in Pseudomonas aeruginosa . Microbiology 153:1508–1518 [View Article][PubMed]
    [Google Scholar]
  36. Miethke M., Marahiel M. A. ( 2007). Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451 [View Article][PubMed]
    [Google Scholar]
  37. Mislin G. L., Hoegy F., Cobessi D., Poole K., Rognan D., Schalk I. J. ( 2006). Binding properties of pyochelin and structurally related molecules to FptA of Pseudomonas aeruginosa . J Mol Biol 357:1437–1448 [View Article][PubMed]
    [Google Scholar]
  38. Molina-Henares A. J., Krell T., Eugenia Guazzaroni M., Segura A., Ramos J. L. ( 2006). Members of the IclR family of bacterial transcriptional regulators function as activators and/or repressors. FEMS Microbiol Rev 30:157–186 [View Article][PubMed]
    [Google Scholar]
  39. Neilands J. B. ( 1995). Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726[PubMed] [CrossRef]
    [Google Scholar]
  40. Newman J. R., Fuqua C. ( 1999). Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203 [View Article][PubMed]
    [Google Scholar]
  41. Noinaj N., Guillier M., Barnard T. J., Buchanan S. K. ( 2010). TonB-dependent transporters: regulation, structure, and function. Annu Rev Microbiol 64:43–60 [View Article][PubMed]
    [Google Scholar]
  42. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. ( 2002). GeneChip expression analysis of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287 [View Article][PubMed]
    [Google Scholar]
  43. Palma M., Worgall S., Quadri L. E. ( 2003). Transcriptome analysis of the Pseudomonas aeruginosa response to iron. Arch Microbiol 180:374–379 [View Article][PubMed]
    [Google Scholar]
  44. Pierce J. R., Earhart C. F. ( 1986). Escherichia coli K-12 envelope proteins specifically required for ferrienterobactin uptake. J Bacteriol 166:930–936[PubMed]
    [Google Scholar]
  45. Poole K., Neshat S., Krebes K., Heinrichs D. E. ( 1993). Cloning and nucleotide sequence analysis of the ferripyoverdine receptor gene fpvA of Pseudomonas aeruginosa . J Bacteriol 175:4597–4604[PubMed]
    [Google Scholar]
  46. Schalk I. J. ( 2008). Metal trafficking via siderophores in Gram-negative bacteria: specificities and characteristics of the pyoverdine pathway. J Inorg Biochem 102:1159–1169 [View Article][PubMed]
    [Google Scholar]
  47. Schweizer H. P. ( 1991). Escherichia-Pseudomonas shuttle vectors derived from pUC18/19. Gene 97:109–112 [View Article][PubMed]
    [Google Scholar]
  48. Skaar E. P. ( 2010). The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog 6:e1000949 [View Article][PubMed]
    [Google Scholar]
  49. Stoebner J. A., Butterton J. R., Calderwood S. B., Payne S. M. ( 1992). Identification of the vibriobactin receptor of Vibrio cholerae . J Bacteriol 174:3270–3274[PubMed]
    [Google Scholar]
  50. Stojiljkovic I., Bäumler A. J., Hantke K. ( 1994). Fur regulon in Gram-negative bacteria. Identification and characterization of new iron-regulated Escherichia coli genes by a Fur titration assay. J Mol Biol 236:531–545 [View Article][PubMed]
    [Google Scholar]
  51. van Oeffelen L., Cornelis P., Van Delm W., De Ridder F., De Moor B., Moreau Y. ( 2008). Detecting cis-regulatory binding sites for cooperatively binding proteins. Nucleic Acids Res 36:e46 [View Article][PubMed]
    [Google Scholar]
  52. Visca P., Leoni L., Wilson M. J., Lamont I. L. ( 2002). Iron transport and regulation, cell signalling and genomics: lessons from Escherichia coli and Pseudomonas . Mol Microbiol 45:1177–1190 [View Article][PubMed]
    [Google Scholar]
  53. Woodcock D. M., Crowther P. J., Doherty J., Jefferson S., DeCruz E., Noyer-Weidner M., Smith S. S., Michael M. Z., Graham M. W. ( 1989). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Res 17:3469–3478 [View Article][PubMed]
    [Google Scholar]
  54. Zhang H. B., Wang C., Zhang L. H. ( 2004). The quormone degradation system of Agrobacterium tumefaciens is regulated by starvation signal and stress alarmone (p)ppGpp. Mol Microbiol 52:1389–1401 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044768-0
Loading
/content/journal/micro/10.1099/mic.0.044768-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error