1887

Abstract

The anaerobic nitrate reductase operon is repressed by a transcriptional regulator, ArnR, under aerobic conditions. A consensus binding site of the cAMP receptor protein (CRP)-type regulator, GlxR, was recently found upstream of the ArnR binding site in the promoter region. Here we investigated the involvement of GlxR and cAMP in expression of the operon . Electrophoretic mobility shift assays showed that the putative GlxR binding motif in the promoter region is essential for the cAMP-dependent binding of GlxR. Promoter-reporter assays showed that mutation in the GlxR binding site resulted in significant reduction of promoter activity. Furthermore, a deletion mutant of the adenylate cyclase gene , which is involved in cAMP synthesis, exhibited a decrease in both promoter activity and nitrate reductase activity. These results demonstrated that GlxR positively regulates expression in a cAMP-dependent manner.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044552-0
2011-01-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/21.html?itemId=/content/journal/micro/10.1099/mic.0.044552-0&mimeType=html&fmt=ahah

References

  1. Bonnefoy, V. & Demoss, J. A. ( 1994; ). Nitrate reductases in Escherichia coli. Antonie van Leeuwenhoek 66, 47–56.[CrossRef]
    [Google Scholar]
  2. Brune, I., Brinkrolf, K., Kalinowski, J., Püehler, A. & Tauch, A. ( 2005; ). The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum, Corynebacterium efficiens, Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6, 86.[CrossRef]
    [Google Scholar]
  3. Bussmann, M., Emer, D., Hasenbein, S., Degraf, S., Eikmanns, B. J. & Bott, M. ( 2009; ). Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol 143, 173–182.[CrossRef]
    [Google Scholar]
  4. Cha, P. H., Park, S. Y., Moon, M. W., Subhadra, B., Oh, T. K., Kim, E., Kim, J. F. & Lee, J. K. ( 2010; ). Characterization of an adenylate cyclase gene (cyaB) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl Microbiol Biotechnol 85, 1061–1068.[CrossRef]
    [Google Scholar]
  5. Charania, M. A., Brockman, K. L., Zhang, Y., Banerjee, A., Pinchuk, G. E., Fredrickson, J. K., Beliaev, A. S. & Saffarini, D. A. ( 2009; ). Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191, 4298–4306.[CrossRef]
    [Google Scholar]
  6. Cole, J. ( 1996; ). Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation? FEMS Microbiol Lett 136, 1–11.[CrossRef]
    [Google Scholar]
  7. Crother, D. M. & Steitz, T. A. ( 1992; ). Transcriptional activation by Escherichia coli Crp protein. In Transcriptional Regulation, pp. 501–534. Edited by Mcknight, S. L. & Yamamoto, K. R.. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  8. Fritz, C., Maass, S., Kreft, A. & Bange, F. C. ( 2002; ). Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect Immun 70, 286–291.[CrossRef]
    [Google Scholar]
  9. Gunsalus, R. P. & Park, S. J. ( 1994; ). Aerobic–anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol 145, 437–450.[CrossRef]
    [Google Scholar]
  10. Inui, M., Kawaguchi, H., Murakami, S., Vertès, A. A. & Yukawa, H. ( 2004a; ). Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8, 243–254.[CrossRef]
    [Google Scholar]
  11. Inui, M., Murakami, S., Okino, S., Kawaguchi, H., Vertès, A. A. & Yukawa, H. ( 2004b; ). Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7, 182–196.[CrossRef]
    [Google Scholar]
  12. Inui, M., Suda, M., Okino, S., Nonaka, H., Puskas, L. G., Vertès, A. A. & Yukawa, H. ( 2007; ). Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153, 2491–2504.[CrossRef]
    [Google Scholar]
  13. Kim, H. J., Kim, T. H., Kim, Y. & Lee, H. S. ( 2004; ). Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186, 3453–3460.[CrossRef]
    [Google Scholar]
  14. Kinoshita, S. ( 1985; ). Glutamic acid bacteria. In Biology of Industrial Microorganisms, pp. 115–146. Edited by Demain, A. L. & Solomon, N. A.. London. : Benjamin Cummings.
    [Google Scholar]
  15. Kohl, T. A. & Tauch, A. ( 2009; ). The GlxR regulon of the amino acid producer Corynebacterium glutamicum: Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143, 239–246.[CrossRef]
    [Google Scholar]
  16. Kohl, T. A., Baumbach, J., Jungwirth, B., Pühler, A. & Tauch, A. ( 2008; ). The GlxR regulon of the amino acid producer Corynebacterium glutamicum: in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135, 340–350.[CrossRef]
    [Google Scholar]
  17. Körner, H., Sofia, H. J. & Zumft, W. G. ( 2003; ). Phylogeny of the bacterial superfamily of Crp–Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27, 559–592.[CrossRef]
    [Google Scholar]
  18. Liebl, W. ( 2001; ). Corynebacterium nonmedical. In The Prokaryotes, pp. 796–818. Edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Stackebrandt, E.. New York. : Springer.
    [Google Scholar]
  19. MacGregor, C. H. & Schnaitman, C. A. ( 1974; ). Nitrate reductase in E. coli: properties of the enzyme and in vitro reconstitution from enzyme-deficient mutants. J Supramol Struct 2, 715–727.[CrossRef]
    [Google Scholar]
  20. Malm, S., Tiffert, Y., Micklinghoff, J., Schultze, S., Joost, I., Weber, I., Horst, S., Ackermann, B., Schmidt, M. & other authors ( 2009; ). The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology 155, 1332–1339.[CrossRef]
    [Google Scholar]
  21. Miller, J. H. ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  22. Mishra, A. K., Alderwick, L. J., Rittmann, D., Tatituri, R. V., Nigou, J., Gilleron, M., Eggeling, L. & Besra, G. S. ( 2007; ). Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis. Mol Microbiol 65, 1503–1517.[CrossRef]
    [Google Scholar]
  23. Moreno-Vivián, C., Cabello, P., Martínez-Luque, M., Blasco, R. & Castillo, F. ( 1999; ). Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181, 6573–6584.
    [Google Scholar]
  24. Nakano, M. M. & Zuber, P. ( 1998; ). Anaerobic growth of a “strict aerobe” (Bacillus subtilis). Annu Rev Microbiol 52, 165–190.[CrossRef]
    [Google Scholar]
  25. Nakata, K., Inui, M., Kos, P. B., Vertès, A. A. & Yukawa, H. ( 2003; ). Vectors for the genetics engineering of corynebacteria. In Fermentaion Biotechnology, ACS Symposium Series 862, pp. 175–191. Edited by Saha, B. C.. Washington, DC. : American Chemical Society.
    [Google Scholar]
  26. Nishimura, T., Vertès, A. A., Shinoda, Y., Inui, M. & Yukawa, H. ( 2007; ). Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75, 889–897.[CrossRef]
    [Google Scholar]
  27. Nishimura, T., Teramoto, H., Vertès, A. A., Inui, M. & Yukawa, H. ( 2008; ). ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum. J Bacteriol 190, 3264–3273.[CrossRef]
    [Google Scholar]
  28. Panhorst, M., Sorger-Herrmann, U. & Wendisch, V. F. ( 2010; ). The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum. J Biotechnol July 16 [Epub ahead of print].
    [Google Scholar]
  29. Park, S. Y., Moon, M. W., Subhadra, B. & Lee, J. K. ( 2010; ). Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol Lett 304, 107–115.[CrossRef]
    [Google Scholar]
  30. Poole, R. K. & Hughes, M. N. ( 2000; ). New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36, 775–783.[CrossRef]
    [Google Scholar]
  31. Poole, R. K., Anjum, M. F., Membrillo-Hernández, J., Kim, S. O., Hughes, M. N. & Stewart, V. ( 1996; ). Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178, 5487–5492.
    [Google Scholar]
  32. Reents, H., Münch, R., Dammeyer, T., Jahn, D. & Härtig, E. ( 2006; ). The Fnr regulon of Bacillus subtilis. J Bacteriol 188, 1103–1112.[CrossRef]
    [Google Scholar]
  33. Saffarini, D. A., Schultz, R. & Beliaev, A. ( 2003; ). Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis. J Bacteriol 185, 3668–3671.[CrossRef]
    [Google Scholar]
  34. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  35. Shi, L., Sohaskey, C. D., Kana, B. D., Dawes, S., North, R. J., Mizrahi, V. & Gennaro, M. L. ( 2005; ). Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A 102, 15629–15634.[CrossRef]
    [Google Scholar]
  36. Sohaskey, C. D. ( 2008; ). Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 190, 2981–2986.[CrossRef]
    [Google Scholar]
  37. Sohaskey, C. D. & Wayne, L. G. ( 2003; ). Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis. J Bacteriol 185, 7247–7256.[CrossRef]
    [Google Scholar]
  38. Takeno, S., Ohnishi, J., Komatsu, T., Masaki, T., Sen, K. & Ikeda, M. ( 2007; ). Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum. Appl Microbiol Biotechnol 75, 1173–1182.[CrossRef]
    [Google Scholar]
  39. Terasawa, M. & Yukawa, H. ( 1993; ). Industrial production of biochemicals by native immobilization. In Industrial Application of Immobilized Biocatalists, pp. 37–52. Edited by Kobayashi, T.. New York. : Dekker.
    [Google Scholar]
  40. Toyoda, K., Teramoto, H., Inui, M. & Yukawa, H. ( 2009; ). Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum. J Bacteriol 191, 968–977.[CrossRef]
    [Google Scholar]
  41. van Ooyen, J., Emer, D., Bussmann, M., Bott, M., Eikmanns, B. J. & Eggeling, L. ( 2010; ). Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J Biotechnol July 12 [Epub ahead of print].
    [Google Scholar]
  42. Vertès, A. A., Inui, M., Kobayashi, M., Kurusu, Y. & Yukawa, H. ( 1993; ). Presence of mrr- and mcr-like restriction systems in coryneform bacteria. Res Microbiol 144, 181–185.[CrossRef]
    [Google Scholar]
  43. Weber, I., Fritz, C., Ruttkowski, S., Kreft, A. & Bange, F. C. ( 2000; ). Anaerobic nitrate reductase (narGHJI) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol 35, 1017–1025.[CrossRef]
    [Google Scholar]
  44. Yukawa, H., Omumasaba, C. A., Nonaka, H., Kos, P., Okai, N., Suzuki, N., Suda, M., Tsuge, Y., Watanabe, J. & other authors ( 2007; ). Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153, 1042–1058.[CrossRef]
    [Google Scholar]
  45. Zumft, W. G. ( 1997; ). Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61, 533–616.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044552-0
Loading
/content/journal/micro/10.1099/mic.0.044552-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error