1887

Abstract

The anaerobic nitrate reductase operon is repressed by a transcriptional regulator, ArnR, under aerobic conditions. A consensus binding site of the cAMP receptor protein (CRP)-type regulator, GlxR, was recently found upstream of the ArnR binding site in the promoter region. Here we investigated the involvement of GlxR and cAMP in expression of the operon . Electrophoretic mobility shift assays showed that the putative GlxR binding motif in the promoter region is essential for the cAMP-dependent binding of GlxR. Promoter-reporter assays showed that mutation in the GlxR binding site resulted in significant reduction of promoter activity. Furthermore, a deletion mutant of the adenylate cyclase gene , which is involved in cAMP synthesis, exhibited a decrease in both promoter activity and nitrate reductase activity. These results demonstrated that GlxR positively regulates expression in a cAMP-dependent manner.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044552-0
2011-01-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/21.html?itemId=/content/journal/micro/10.1099/mic.0.044552-0&mimeType=html&fmt=ahah

References

  1. Bonnefoy V., Demoss J. A. 1994; Nitrate reductases in Escherichia coli . Antonie van Leeuwenhoek 66:47–56
    [Google Scholar]
  2. Brune I., Brinkrolf K., Kalinowski J., Püehler A., Tauch A. 2005; The individual and common repertoire of DNA-binding transcriptional regulators of Corynebacterium glutamicum , Corynebacterium efficiens , Corynebacterium diphtheriae and Corynebacterium jeikeium deduced from the complete genome sequences. BMC Genomics 6:86
    [Google Scholar]
  3. Bussmann M., Emer D., Hasenbein S., Degraf S., Eikmanns B. J., Bott M. 2009; Transcriptional control of the succinate dehydrogenase operon sdhCAB of Corynebacterium glutamicum by the cAMP-dependent regulator GlxR and the LuxR-type regulator RamA. J Biotechnol 143:173–182
    [Google Scholar]
  4. Cha P. H., Park S. Y., Moon M. W., Subhadra B., Oh T. K., Kim E., Kim J. F., Lee J. K. 2010; Characterization of an adenylate cyclase gene ( cyaB ) deletion mutant of Corynebacterium glutamicum ATCC 13032. Appl Microbiol Biotechnol 85:1061–1068
    [Google Scholar]
  5. Charania M. A., Brockman K. L., Zhang Y., Banerjee A., Pinchuk G. E., Fredrickson J. K., Beliaev A. S., Saffarini D. A. 2009; Involvement of a membrane-bound class III adenylate cyclase in regulation of anaerobic respiration in Shewanella oneidensis MR-1. J Bacteriol 191:4298–4306
    [Google Scholar]
  6. Cole J. 1996; Nitrate reduction to ammonia by enteric bacteria: redundancy, or a strategy for survival during oxygen starvation?. FEMS Microbiol Lett 136:1–11
    [Google Scholar]
  7. Crother D. M., Steitz T. A. 1992; Transcriptional activation by Escherichia coli Crp protein. In Transcriptional Regulation pp 501–534 Edited by Mcknight S. L., Yamamoto K. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  8. Fritz C., Maass S., Kreft A., Bange F. C. 2002; Dependence of Mycobacterium bovis BCG on anaerobic nitrate reductase for persistence is tissue specific. Infect Immun 70:286–291
    [Google Scholar]
  9. Gunsalus R. P., Park S. J. 1994; Aerobic–anaerobic gene regulation in Escherichia coli : control by the ArcAB and Fnr regulons. Res Microbiol 145:437–450
    [Google Scholar]
  10. Inui M., Kawaguchi H., Murakami S., Vertès A. A., Yukawa H. 2004a; Metabolic engineering of Corynebacterium glutamicum for fuel ethanol production under oxygen-deprivation conditions. J Mol Microbiol Biotechnol 8:243–254
    [Google Scholar]
  11. Inui M., Murakami S., Okino S., Kawaguchi H., Vertès A. A., Yukawa H. 2004b; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196
    [Google Scholar]
  12. Inui M., Suda M., Okino S., Nonaka H., Puskas L. G., Vertès A. A., Yukawa H. 2007; Transcriptional profiling of Corynebacterium glutamicum metabolism during organic acid production under oxygen deprivation conditions. Microbiology 153:2491–2504
    [Google Scholar]
  13. Kim H. J., Kim T. H., Kim Y., Lee H. S. 2004; Identification and characterization of glxR , a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum . J Bacteriol 186:3453–3460
    [Google Scholar]
  14. Kinoshita S. 1985; Glutamic acid bacteria. In Biology of Industrial Microorganisms pp 115–146 Edited by Demain A. L., Solomon N. A. London: Benjamin Cummings;
    [Google Scholar]
  15. Kohl T. A., Tauch A. 2009; The GlxR regulon of the amino acid producer Corynebacterium glutamicum : Detection of the corynebacterial core regulon and integration into the transcriptional regulatory network model. J Biotechnol 143:239–246
    [Google Scholar]
  16. Kohl T. A., Baumbach J., Jungwirth B., Pühler A., Tauch A. 2008; The GlxR regulon of the amino acid producer Corynebacterium glutamicum : in silico and in vitro detection of DNA binding sites of a global transcription regulator. J Biotechnol 135:340–350
    [Google Scholar]
  17. Körner H., Sofia H. J., Zumft W. G. 2003; Phylogeny of the bacterial superfamily of Crp–Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27:559–592
    [Google Scholar]
  18. Liebl W. 2001; Corynebacterium nonmedical. In The Prokaryotes pp 796–818 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  19. MacGregor C. H., Schnaitman C. A. 1974; Nitrate reductase in E. coli : properties of the enzyme and in vitro reconstitution from enzyme-deficient mutants. J Supramol Struct 2:715–727
    [Google Scholar]
  20. Malm S., Tiffert Y., Micklinghoff J., Schultze S., Joost I., Weber I., Horst S., Ackermann B., Schmidt M. other authors 2009; The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis . Microbiology 155:1332–1339
    [Google Scholar]
  21. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Mishra A. K., Alderwick L. J., Rittmann D., Tatituri R. V., Nigou J., Gilleron M., Eggeling L., Besra G. S. 2007; Identification of an α (1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis . Mol Microbiol 65:1503–1517
    [Google Scholar]
  23. Moreno-Vivián C., Cabello P., , Martínez-Luque M., Blasco R., Castillo F. 1999; Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584
    [Google Scholar]
  24. Nakano M. M., Zuber P. 1998; Anaerobic growth of a “strict aerobe” ( Bacillus subtilis . Annu Rev Microbiol 52:165–190
    [Google Scholar]
  25. Nakata K., Inui M., Kos P. B., Vertès A. A., Yukawa H. 2003; Vectors for the genetics engineering of corynebacteria. In Fermentaion Biotechnology, ACS Symposium Series 862 pp 175–191 Edited by Saha B. C. Washington, DC: American Chemical Society;
    [Google Scholar]
  26. Nishimura T., Vertès A. A., Shinoda Y., Inui M., Yukawa H. 2007; Anaerobic growth of Corynebacterium glutamicum using nitrate as a terminal electron acceptor. Appl Microbiol Biotechnol 75:889–897
    [Google Scholar]
  27. Nishimura T., Teramoto H., Vertès A. A., Inui M., Yukawa H. 2008; ArnR, a novel transcriptional regulator, represses expression of the narKGHJI operon in Corynebacterium glutamicum . J Bacteriol 190:3264–3273
    [Google Scholar]
  28. Panhorst M., Sorger-Herrmann U., Wendisch V. F. 2010; The pstSCAB operon for phosphate uptake is regulated by the global regulator GlxR in Corynebacterium glutamicum . J Biotechnol July 16: [Epub ahead of print]
    [Google Scholar]
  29. Park S. Y., Moon M. W., Subhadra B., Lee J. K. 2010; Functional characterization of the glxR deletion mutant of Corynebacterium glutamicum ATCC 13032: involvement of GlxR in acetate metabolism and carbon catabolite repression. FEMS Microbiol Lett 304:107–115
    [Google Scholar]
  30. Poole R. K., Hughes M. N. 2000; New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36:775–783
    [Google Scholar]
  31. Poole R. K., Anjum M. F., , Membrillo-Hernández J., Kim S. O., Hughes M. N., Stewart V. 1996; Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178:5487–5492
    [Google Scholar]
  32. Reents H., , Münch R., Dammeyer T., Jahn D., Härtig E. 2006; The Fnr regulon of Bacillus subtilis . J Bacteriol 188:1103–1112
    [Google Scholar]
  33. Saffarini D. A., Schultz R., Beliaev A. 2003; Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis . J Bacteriol 185:3668–3671
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Shi L., Sohaskey C. D., Kana B. D., Dawes S., North R. J., Mizrahi V., Gennaro M. L. 2005; Changes in energy metabolism of Mycobacterium tuberculosis in mouse lung and under in vitro conditions affecting aerobic respiration. Proc Natl Acad Sci U S A 102:15629–15634
    [Google Scholar]
  36. Sohaskey C. D. 2008; Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol 190:2981–2986
    [Google Scholar]
  37. Sohaskey C. D., Wayne L. G. 2003; Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis . J Bacteriol 185:7247–7256
    [Google Scholar]
  38. Takeno S., Ohnishi J., Komatsu T., Masaki T., Sen K., Ikeda M. 2007; Anaerobic growth and potential for amino acid production by nitrate respiration in Corynebacterium glutamicum . Appl Microbiol Biotechnol 75:1173–1182
    [Google Scholar]
  39. Terasawa M., Yukawa H. 1993; Industrial production of biochemicals by native immobilization. In Industrial Application of Immobilized Biocatalists pp 37–52 Edited by Kobayashi T. New York: Dekker;
    [Google Scholar]
  40. Toyoda K., Teramoto H., Inui M., Yukawa H. 2009; Involvement of the LuxR-type transcriptional regulator RamA in regulation of expression of the gapA gene, encoding glyceraldehyde-3-phosphate dehydrogenase of Corynebacterium glutamicum . J Bacteriol 191:968–977
    [Google Scholar]
  41. van Ooyen J., Emer D., Bussmann M., Bott M., Eikmanns B. J., Eggeling L. 2010; Citrate synthase in Corynebacterium glutamicum is encoded by two gltA transcripts which are controlled by RamA, RamB, and GlxR. J Biotechnol July 12 [Epub ahead of print]
    [Google Scholar]
  42. Vertès A. A., Inui M., Kobayashi M., Kurusu Y., Yukawa H. 1993; Presence of mrr - and mcr -like restriction systems in coryneform bacteria. Res Microbiol 144:181–185
    [Google Scholar]
  43. Weber I., Fritz C., Ruttkowski S., Kreft A., Bange F. C. 2000; Anaerobic nitrate reductase ( narGHJI ) activity of Mycobacterium bovis BCG in vitro and its contribution to virulence in immunodeficient mice. Mol Microbiol 35:1017–1025
    [Google Scholar]
  44. Yukawa H., Omumasaba C. A., Nonaka H., Kos P., Okai N., Suzuki N., Suda M., Tsuge Y., Watanabe J. other authors 2007; Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiology 153:1042–1058
    [Google Scholar]
  45. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044552-0
Loading
/content/journal/micro/10.1099/mic.0.044552-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error