1887

Abstract

serovar Enteritidis ( Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low ( = 7), medium ( = 18) and high ( = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive and caused more and earlier mortalities, whereas the latter were significantly less invasive , causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins.

Funding
This study was supported by the:
  • National Institute of Allergy and Infectious Diseases
  • National Institutes of Health
  • Department of Health and Human Services (Award N01-A1-30055)
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044461-0
2011-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1428.html?itemId=/content/journal/micro/10.1099/mic.0.044461-0&mimeType=html&fmt=ahah

References

  1. Agron P. G., Walker R. L., Kinde H., Sawyer S. J., Hayes D. C., Wollard J., Andersen G. L. ( 2001). Identification by subtractive hybridization of sequences specific for Salmonella enterica serovar Enteritidis. Appl Environ Microbiol 67:4984–4991 [View Article][PubMed]
    [Google Scholar]
  2. Allen-Vercoe E., Woodward M. J. ( 1999). The role of flagella, but not fimbriae, in the adherence of Salmonella enterica serotype Enteritidis to chick gut explant. J Med Microbiol 48:771–780 [View Article][PubMed]
    [Google Scholar]
  3. Altekruse S. F., Bauer N., Chanlongbutra A., DeSagun R., Naugle A., Schlosser W., Umholtz R., White P. ( 2006). Salmonella enteritidis in broiler chickens, United States, 2000–2005. Emerg Infect Dis 12:1848–1852[PubMed] [CrossRef]
    [Google Scholar]
  4. Alvarez J., Sota M., Vivanco A. B., Perales I., Cisterna R., Rementeria A., Garaizar J. ( 2004). Development of a multiplex PCR technique for detection and epidemiological typing of Salmonella in human clinical samples. J Clin Microbiol 42:1734–1738 [View Article][PubMed]
    [Google Scholar]
  5. Amy M., Velge P., Senocq D., Bottreau E., Mompart F., Virlogeux-Payant I. ( 2004). Identification of a new Salmonella enterica serovar Enteritidis locus involved in cell invasion and in the colonisation of chicks. Res Microbiol 155:543–552 [View Article][PubMed]
    [Google Scholar]
  6. Andrews J. M. ( 2001). Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:Suppl 15–16[PubMed] [CrossRef]
    [Google Scholar]
  7. Arricau N., Hermant D., Waxin H., Ecobichon C., Duffey P. S., Popoff M. Y. ( 1998). The RcsB–RcsC regulatory system of Salmonella typhi differentially modulates the expression of invasion proteins, flagellin and Vi antigen in response to osmolarity. Mol Microbiol 29:835–850 [View Article][PubMed]
    [Google Scholar]
  8. Bakshi C. S., Singh V. P., Malik M., Singh R. K., Sharma B. ( 2003). 55 kb plasmid and virulence-associated genes are positively correlated with Salmonella enteritidis pathogenicity in mice and chickens. Vet Res Commun 27:425–432 [View Article][PubMed]
    [Google Scholar]
  9. Barrow P. A. ( 1991). Experimental infection of chickens with Salmonella enteritidis . Avian Pathol 20:145–153 [View Article][PubMed]
    [Google Scholar]
  10. Berrang M. E., Bailey J. S., Altekruse S. F., Shaw W. K. Jr, Patel B. L., Meinersmann R. J., Fedorka-Cray P. J. ( 2009). Prevalence, serotype, and antimicrobial resistance of Salmonella on broiler carcasses postpick and postchill in 20 U.S. processing plants. J Food Prot 72:1610–1615[PubMed]
    [Google Scholar]
  11. Betancor L., Yim L., Fookes M., Martinez A., Thomson N. R., Ivens A., Peters S., Bryant C., Algorta G. et al. ( 2009). Genomic and phenotypic variation in epidemic-spanning Salmonella enterica serovar Enteritidis isolates. BMC Microbiol 9:237 [View Article][PubMed]
    [Google Scholar]
  12. Bohez L., Ducatelle R., Pasmans F., Botteldoorn N., Haesebrouck F., Van Immerseel F. ( 2006). Salmonella enterica serovar Enteritidis colonization of the chicken caecum requires the HilA regulatory protein. Vet Microbiol 116:202–210 [View Article][PubMed]
    [Google Scholar]
  13. Botteldoorn N., Van Coillie E., Grijspeerdt K., Werbrouck H., Haesebrouck F., Donné E., D’Haese E., Heyndrickx M., Pasmans F., Herman L. ( 2006). Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosome-like conditions. J Microbiol Methods 66:125–135 [View Article][PubMed]
    [Google Scholar]
  14. Botteldoorn N., Van Coillie E., Goris J., Werbrouck H., Piessens V., Godard C., Scheldeman P., Herman L., Heyndrickx M. ( 2010). Limited genetic diversity and gene expression differences between egg- and non-egg-related Salmonella Enteritidis strains. Zoonoses Public Health 57:345–357[PubMed]
    [Google Scholar]
  15. Boxrud D., Pederson-Gulrud K., Wotton J., Medus C., Lyszkowicz E., Besser J., Bartkus J. M. ( 2007). Comparison of multiple-locus variable-number tandem repeat analysis, pulsed-field gel electrophoresis, and phage typing for subtype analysis of Salmonella enterica serotype Enteritidis. J Clin Microbiol 45:536–543 [View Article][PubMed]
    [Google Scholar]
  16. Burns J. L., Griffith A., Barry J. J., Jonas M., Chi E. Y. ( 2001). Transcytosis of gastrointestinal epithelial cells by Escherichia coli K1. Pediatr Res 49:30–37 [View Article][PubMed]
    [Google Scholar]
  17. CDC ( 2003). Outbreaks of Salmonella serotype Enteritidis infection associated with eating shell eggs – United States, 1999–2001. MMWR Morb Mortal Wkly Rep 51:1149–1152[PubMed]
    [Google Scholar]
  18. CDC ( 2007). Salmonella serotype Enteritidis infections among workers producing poultry vaccine, Maine, November–December 2006. MMWR Morb Mortal Wkly Rep 56:877–879
    [Google Scholar]
  19. Cho S., Boxrud D. J., Bartkus J. M., Whittam T. S., Saeed M. ( 2007). Multiple-locus variable-number tandem repeat analysis of Salmonella Enteritidis isolates from human and non-human sources using a single multiplex PCR. FEMS Microbiol Lett 275:16–23 [View Article][PubMed]
    [Google Scholar]
  20. Clavijo R. I., Loui C., Andersen G. L., Riley L. W., Lu S. ( 2006). Identification of genes associated with survival of Salmonella enterica serovar Enteritidis in chicken egg albumen. Appl Environ Microbiol 72:1055–1064 [View Article][PubMed]
    [Google Scholar]
  21. Cogan T. A., Jørgensen F., Lappin-Scott H. M., Benson C. E., Woodward M. J., Humphrey T. J. ( 2004). Flagella and curli fimbriae are important for the growth of Salmonella enterica serovars in hen eggs. Microbiology 150:1063–1071 [View Article][PubMed]
    [Google Scholar]
  22. De Buck J., Van Immerseel F., Haesebrouck F., Ducatelle R. ( 2004). Colonization of the chicken reproductive tract and egg contamination by Salmonella . J Appl Microbiol 97:233–245 [View Article][PubMed]
    [Google Scholar]
  23. de Silva G. D., Kantzanou M., Justice A., Massey R. C., Wilkinson A. R., Day N. P., Peacock S. J. ( 2002). The ica operon and biofilm production in coagulase-negative Staphylococci associated with carriage and disease in a neonatal intensive care unit. J Clin Microbiol 40:382–388 [View Article][PubMed]
    [Google Scholar]
  24. Desin T. S., Lam P. K., Koch B., Mickael C., Berberov E., Wisner A. L., Townsend H. G., Potter A. A., Köster W. ( 2009). Salmonella enterica serovar Enteritidis pathogenicity island 1 is not essential for but facilitates rapid systemic spread in chickens. Infect Immun 77:2866–2875 [View Article][PubMed]
    [Google Scholar]
  25. Dhillon A. S., Alisantosa B., Shivaprasad H. L., Jack O., Schaberg D., Bandli D. ( 1999). Pathogenicity of Salmonella enteritidis phage types 4, 8, and 23 in broiler chicks. Avian Dis 43:506–515 [View Article][PubMed]
    [Google Scholar]
  26. Dibb-Fuller M. P., Allen-Vercoe E., Thorns C. J., Woodward M. J. ( 1999). Fimbriae- and flagella-mediated association with and invasion of cultured epithelial cells by Salmonella enteritidis . Microbiology 145:1023–1031 [View Article][PubMed]
    [Google Scholar]
  27. Dieye Y., Ameiss K., Mellata M., Curtiss R. III ( 2009). The Salmonella Pathogenicity Island (SPI) 1 contributes more than SPI2 to the colonization of the chicken by Salmonella enterica serovar Typhimurium. BMC Microbiol 9:3 [View Article][PubMed]
    [Google Scholar]
  28. Doran J. L., Collinson S. K., Clouthier S. C., Cebula T. A., Koch W. H., Burian J., Banser P. A., Todd E. C., Kay W. W. ( 1996). Diagnostic potential of sefA DNA probes to Salmonella enteritidis and certain other O-serogroup D1 Salmonella serovars. Mol Cell Probes 10:233–246 [View Article][PubMed]
    [Google Scholar]
  29. Duchet-Suchaux M., Léchopier P., Marly J., Bernardet P., Delaunay R., Pardon P. ( 1995). Quantification of experimental Salmonella enteritidis carrier state in B13 leghorn chicks. Avian Dis 39:796–803 [View Article][PubMed]
    [Google Scholar]
  30. EFSA ( 2007). The community summary report on trends and sources of zoonoses, zoonotic agents, antimicrobial resistance and foodborne outbreaks in the European Union in 2006. EFSA J 130:1–352
    [Google Scholar]
  31. Eftekhar F., Speert D. P. ( 2009). Biofilm formation by persistent and non-persistent isolates of Staphylococcus epidermidis from a neonatal intensive care unit. J Hosp Infect 71:112–116 [View Article][PubMed]
    [Google Scholar]
  32. Fardini Y., Chettab K., Grépinet O., Rochereau S., Trotereau J., Harvey P., Amy M., Bottreau E., Bumstead N. et al. ( 2007). The YfgL lipoprotein is essential for type III secretion system expression and virulence of Salmonella enterica serovar Enteritidis. Infect Immun 75:358–370 [View Article][PubMed]
    [Google Scholar]
  33. Finlay B. B., Falkow S. ( 1990). Salmonella interactions with polarized human intestinal Caco-2 epithelial cells. J Infect Dis 162:1096–1106[PubMed] [CrossRef]
    [Google Scholar]
  34. Foley S. L., Lynne A. M., Nayak R. ( 2008). Salmonella challenges: prevalence in swine and poultry and potential pathogenicity of such isolates. J Anim Sci 86:Suppl. 14E149–E162 [View Article][PubMed]
    [Google Scholar]
  35. Gast R. K., Benson S. T. ( 1995). The comparative virulence for chicks of Salmonella enteritidis phage type 4 isolates and isolates of phage types commonly found in poultry in the United States. Avian Dis 39:567–574 [View Article][PubMed]
    [Google Scholar]
  36. Gast R. K., Benson S. T. ( 1996). Intestinal colonization and organ invasion in chicks experimentally infected with Salmonella enteritidis phage type 4 and other phage types isolated from poultry in the United States. Avian Dis 40:853–857 [View Article][PubMed]
    [Google Scholar]
  37. Gast R. K., Holt P. S. ( 1995). Differences in the multiplication of Salmonella enteritidis strains in liquid whole egg: implications for detecting contaminated eggs from commercial laying flocks. Poult Sci 74:893–897[PubMed] [CrossRef]
    [Google Scholar]
  38. Gast R. K., Holt P. S. ( 2001). Multiplication in egg yolk and survival in egg albumen of Salmonella enterica serotype Enteritidis strains of phage types 4, 8, 13a, and 14b. J Food Prot 64:865–868[PubMed]
    [Google Scholar]
  39. Gast R. K., Guard-Petter J., Holt P. S. ( 2002). Characteristics of Salmonella enteritidis contamination in eggs after oral, aerosol, and intravenous inoculation of laying hens. Avian Dis 46:629–635 [View Article][PubMed]
    [Google Scholar]
  40. Ghosh T. S., Vogt R. L. ( 2006). Cluster of invasive salmonellosis cases in a federal prison in Colorado. Am J Infect Control 34:348–350 [View Article][PubMed]
    [Google Scholar]
  41. Goldberg R. F., Austen W. G. Jr, Zhang X., Munene G., Mostafa G., Biswas S., McCormack M., Eberlin K. R., Nguyen J. T. et al. ( 2008). Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci U S A 105:3551–3556 [View Article][PubMed]
    [Google Scholar]
  42. Golden N. J., Marks H. H., Coleman M. E., Schroeder C. M., Bauer N. E. Jr, Schlosser W. D. ( 2008). Review of induced molting by feed removal and contamination of eggs with Salmonella enterica serovar Enteritidis. Vet Microbiol 131:215–228 [View Article][PubMed]
    [Google Scholar]
  43. Gordon M. A., Graham S. M., Walsh A. L., Wilson L., Phiri A., Molyneux E., Zijlstra E. E., Heyderman R. S., Hart C. A., Molyneux M. E. ( 2008). Epidemics of invasive Salmonella enterica serovar Enteritidis and S. enterica serovar Typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis 46:963–969 [View Article][PubMed]
    [Google Scholar]
  44. Guard-Bouldin J., Gast R. K., Humphrey T. J., Henzler D. J., Morales C., Coles K. ( 2004). Subpopulation characteristics of egg-contaminating Salmonella enterica serovar Enteritidis as defined by the lipopolysaccharide O chain. Appl Environ Microbiol 70:2756–2763 [View Article][PubMed]
    [Google Scholar]
  45. Guard-Petter J. ( 1998). Variants of smooth Salmonella enterica serovar Enteritidis that grow to higher cell density than the wild type are more virulent. Appl Environ Microbiol 64:2166–2172[PubMed]
    [Google Scholar]
  46. Guard-Petter J. ( 2001). The chicken, the egg and Salmonella enteritidis . Environ Microbiol 3:421–430 [View Article][PubMed]
    [Google Scholar]
  47. Guard-Petter J., Keller L. H., Rahman M. M., Carlson R. W., Silvers S. ( 1996). A novel relationship between O-antigen variation, matrix formation, and invasiveness of Salmonella enteritidis . Epidemiol Infect 117:219–231 [View Article][PubMed]
    [Google Scholar]
  48. Guard-Petter J., Parker C. T., Asokan K., Carlson R. W. ( 1999). Clinical and veterinary isolates of Salmonella enterica serovar Enteritidis defective in lipopolysaccharide O-chain polymerization. Appl Environ Microbiol 65:2195–2201[PubMed]
    [Google Scholar]
  49. Hara A., Hibi T., Yoshioka M., Toda K., Watanabe N., Hayashi A., Iwao Y., Saito H., Watanabe T., Tsuchiya M. ( 1993). Changes of proliferative activity and phenotypes in spontaneous differentiation of a colon cancer cell line. Jpn J Cancer Res 84:625–632[PubMed] [CrossRef]
    [Google Scholar]
  50. Hastie T., Tibshirani R., Friedman J. H. ( 2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction New York: Springer;
    [Google Scholar]
  51. He H., Crippen T. L., Farnell M. B., Kogut M. H. ( 2003). Identification of CpG oligodeoxynucleotide motifs that stimulate nitric oxide and cytokine production in avian macrophage and peripheral blood mononuclear cells. Dev Comp Immunol 27:621–627 [View Article][PubMed]
    [Google Scholar]
  52. Hudson C. R., Garcia M., Gast R. K., Maurer J. J. ( 2001). Determination of close genetic relatedness of the major Salmonella enteritidis phage types by pulsed-field gel electrophoresis and DNA sequence analysis of several Salmonella virulence genes. Avian Dis 45:875–886 [View Article][PubMed]
    [Google Scholar]
  53. Humphrey T. J., Slater E., McAlpine K., Rowbury R. J., Gilbert R. J. ( 1995). Salmonella enteritidis phage type 4 isolates more tolerant of heat, acid, or hydrogen peroxide also survive longer on surfaces. Appl Environ Microbiol 61:3161–3164[PubMed]
    [Google Scholar]
  54. Humphrey T. J., Williams A., McAlpine K., Lever M. S., Guard-Petter J., Cox J. M. ( 1996). Isolates of Salmonella enterica Enteritidis PT4 with enhanced heat and acid tolerance are more virulent in mice and more invasive in chickens. Epidemiol Infect 117:79–88 [View Article][PubMed]
    [Google Scholar]
  55. Jain S., Chen J. ( 2007). Attachment and biofilm formation by various serotypes of Salmonella as influenced by cellulose production and thin aggregative fimbriae biosynthesis. J Food Prot 70:2473–2479[PubMed]
    [Google Scholar]
  56. Jones M. A., Hulme S. D., Barrow P. A., Wigley P. ( 2007). The Salmonella pathogenicity island 1 and Salmonella pathogenicity island 2 type III secretion systems play a major role in pathogenesis of systemic disease and gastrointestinal tract colonization of Salmonella enterica serovar Typhimurium in the chicken. Avian Pathol 36:199–203 [View Article][PubMed]
    [Google Scholar]
  57. Kaniga K., Trollinger D., Galán J. E. ( 1995). Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J Bacteriol 177:7078–7085[PubMed]
    [Google Scholar]
  58. Katsenos C., Anastasopoulos N., Patrani M., Mandragos C. ( 2008). Salmonella enteritidis meningitis in a first time diagnosed AIDS patient: Case report. Cases J 1:5 [View Article][PubMed]
    [Google Scholar]
  59. Kernéis S., Chauvière G., Darfeuille-Michaud A., Aubel D., Coconnier M. H., Joly B., Servin A. L. ( 1992). Expression of receptors for enterotoxigenic Escherichia coli during enterocytic differentiation of human polarized intestinal epithelial cells in culture. Infect Immun 60:2572–2580[PubMed]
    [Google Scholar]
  60. Kimura A. C., Reddy V., Marcus R., Cieslak P. R., Mohle-Boetani J. C., Kassenborg H. D., Segler S. D., Hardnett F. P., Barrett T. et al. ( 2004). Chicken consumption is a newly identified risk factor for sporadic Salmonella enterica serotype Enteritidis infections in the United States: a case-control study in FoodNet sites. Clin Infect Dis 38:Suppl. 3S244–S252 [View Article][PubMed]
    [Google Scholar]
  61. Kobayashi H., Hall G. S., Tuohy M. J., Knothe U., Procop G. W., Bauer T. W. ( 2009). Bilateral periprosthetic joint infection caused by Salmonella enterica serotype Enteritidis, and identification of Salmonella sp. using molecular techniques. Int J Infect Dis 13:e463–e466 [View Article][PubMed]
    [Google Scholar]
  62. Lesnick M. L., Reiner N. E., Fierer J., Guiney D. G. ( 2001). The Salmonella spvB virulence gene encodes an enzyme that ADP-ribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. Mol Microbiol 39:1464–1470 [View Article][PubMed]
    [Google Scholar]
  63. Li S., Zhang Z., Pace L., Lillehoj H., Zhang S. ( 2009). Functions exerted by the virulence-associated type-three secretion systems during Salmonella enterica serovar Enteritidis invasion into and survival within chicken oviduct epithelial cells and macrophages. Avian Pathol 38:97–106 [View Article][PubMed]
    [Google Scholar]
  64. Liebana E., Garcia-Migura L., Breslin M. F., Davies R. H., Woodward M. J. ( 2001). Diversity of strains of Salmonella enterica serotype Enteritidis from English poultry farms assessed by multiple genetic fingerprinting. J Clin Microbiol 39:154–161 [View Article][PubMed]
    [Google Scholar]
  65. Lister S. A. ( 1988). Salmonella enteritidis infection in broilers and broiler breeders. Vet Rec 123:350 [View Article][PubMed]
    [Google Scholar]
  66. Little C. L., Rhoades J. R., Hucklesby L., Greenwood M., Surman-Lee S., Bolton F. J., Meldrum R., Wilson I., McDonald C. et al. ( 2008). Survey of Salmonella contamination of raw shell eggs used in food service premises in the United Kingdom, 2005 through 2006. J Food Prot 71:19–26[PubMed] [CrossRef]
    [Google Scholar]
  67. Lock J. L., Board R. G. ( 1992). Persistence of contamination of hens’ egg albumen in vitro with Salmonella serotypes. Epidemiol Infect 108:389–396 [View Article][PubMed]
    [Google Scholar]
  68. Lu S., Manges A. R., Xu Y., Fang F. C., Riley L. W. ( 1999). Analysis of virulence of clinical isolates of Salmonella enteritidis in vivo and in vitro. Infect Immun 67:5651–5657[PubMed]
    [Google Scholar]
  69. Malorny B., Junker E., Helmuth R. ( 2008). Multi-locus variable-number tandem repeat analysis for outbreak studies of Salmonella enterica serotype Enteritidis. BMC Microbiol 8:84 [View Article][PubMed]
    [Google Scholar]
  70. Marcus R., Rabatsky-Ehr T., Mohle-Boetani J. C., Farley M., Medus C., Shiferaw B., Carter M., Zansky S., Kennedy M. et al. ( 2004). Dramatic decrease in the incidence of Salmonella serotype Enteritidis infections in 5 FoodNet sites: 1996-1999. Clin Infect Dis 38:Suppl. 3S135–S141 [View Article][PubMed]
    [Google Scholar]
  71. Marin C., Hernandiz A., Lainez M. ( 2009). Biofilm development capacity of Salmonella strains isolated in poultry, risk factors and their resistance against disinfectants. Poult Sci 88:424–431 [View Article][PubMed]
    [Google Scholar]
  72. Methner U., Barrow P. A. ( 1997). Significance of motility of Salmonella enteritidis and Salmonella typhimurium as a virulence factor and on the expression of the inhibition phenomenon in vitro and in vivo in SPF chickens. Berl Munch Tierarztl Wochenschr 110:391–396[PubMed]
    [Google Scholar]
  73. Morales C. A., Porwollik S., Frye J. G., Kinde H., McClelland M., Guard-Bouldin J. ( 2005). Correlation of phenotype with the genotype of egg-contaminating Salmonella enterica serovar Enteritidis. Appl Environ Microbiol 71:4388–4399 [View Article][PubMed]
    [Google Scholar]
  74. Morpeth S. C., Ramadhani H. O., Crump J. A. ( 2009). Invasive non-Typhi Salmonella disease in Africa. Clin Infect Dis 49:606–611 [View Article][PubMed]
    [Google Scholar]
  75. Mutlu H., Babar J., Maggiore P. R. ( 2009). Extensive Salmonella enteritidis endocarditis involving mitral, tricuspid valves, aortic root and right ventricular wall. J Am Soc Echocardiogr 22:210.e1–210.e3[PubMed] [CrossRef]
    [Google Scholar]
  76. Nakamura M., Sato S., Ohya T., Suzuki S., Ikeda S. ( 1985). Possible relationship of a 36-megadalton Salmonella enteritidis plasmid to virulence in mice. Infect Immun 47:831–833[PubMed]
    [Google Scholar]
  77. Olsen J. E., Tiainen T., Brown D. J. ( 1999). Levels of virulence are not determined by genomic lineage of Salmonella enterica serotype Enteritidis strains. Epidemiol Infect 123:423–430 [View Article][PubMed]
    [Google Scholar]
  78. O’Regan E., McCabe E., Burgess C., McGuinness S., Barry T., Duffy G., Whyte P., Fanning S. ( 2008). Development of a real-time multiplex PCR assay for the detection of multiple Salmonella serotypes in chicken samples. BMC Microbiol 8:156 [View Article][PubMed]
    [Google Scholar]
  79. Otto H., Tezcan-Merdol D., Girisch R., Haag F., Rhen M., Koch-Nolte F. ( 2000). The spvB gene-product of the Salmonella enterica virulence plasmid is a mono(ADP-ribosyl)transferase. Mol Microbiol 37:1106–1115 [View Article][PubMed]
    [Google Scholar]
  80. Pan Z., Carter B., Núñez-García J., Abuoun M., Fookes M., Ivens A., Woodward M. J., Anjum M. F. ( 2009). Identification of genetic and phenotypic differences associated with prevalent and non-prevalent Salmonella Enteritidis phage types: analysis of variation in amino acid transport. Microbiology 155:3200–3213 [View Article][PubMed]
    [Google Scholar]
  81. Pang J. C., Lin J. S., Tsai C. C., Tsen H. Y. ( 2006). The presence of major world-wide clones for phage type 4 and 8 Salmonella enterica serovar Enteritidis and the evaluation of their virulence levels by invasiveness assays in vitro and in vivo. FEMS Microbiol Lett 263:148–154 [View Article][PubMed]
    [Google Scholar]
  82. Parker C. T., Guard-Petter J. ( 2001). Contribution of flagella and invasion proteins to pathogenesis of Salmonella enterica serovar Enteritidis in chicks. FEMS Microbiol Lett 204:287–291 [View Article][PubMed]
    [Google Scholar]
  83. Parker C. T., Liebana E., Henzler D. J., Guard-Petter J. ( 2001). Lipopolysaccharide O-chain microheterogeneity of Salmonella serotypes Enteritidis and Typhimurium. Environ Microbiol 3:332–342 [View Article][PubMed]
    [Google Scholar]
  84. Patrick M. E., Adcock P. M., Gomez T. M., Altekruse S. F., Holland B. H., Tauxe R. V., Swerdlow D. L. ( 2004). Salmonella enteritidis infections, United States, 1985–1999. Emerg Infect Dis 10:1–7[PubMed] [CrossRef]
    [Google Scholar]
  85. Pfaffl M. W., Horgan G. W., Dempfle L. ( 2002). Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36 [View Article][PubMed]
    [Google Scholar]
  86. Poppe C., Demczuk W., McFadden K., Johnson R. P. ( 1993). Virulence of Salmonella enteritidis phagetypes 4, 8 and 13 and other Salmonella spp. for day-old chicks, hens and mice. Can J Vet Res 57:281–287[PubMed]
    [Google Scholar]
  87. Porwollik S., Santiviago C. A., Cheng P., Florea L., Jackson S., McClelland M. ( 2005). Differences in gene content between Salmonella enterica serovar Enteritidis isolates and comparison to closely related serovars Gallinarum and Dublin. J Bacteriol 187:6545–6555 [View Article][PubMed]
    [Google Scholar]
  88. Ridley A. M., Threlfall E. J., Rowe B. ( 1998). Genotypic characterization of Salmonella enteritidis phage types by plasmid analysis, ribotyping, and pulsed-field gel electrophoresis. J Clin Microbiol 36:2314–2321[PubMed]
    [Google Scholar]
  89. Rodríguez M., de Diego I., Mendoza M. C. ( 1998). Extraintestinal salmonellosis in a general hospital (1991 to 1996): relationships between Salmonella genomic groups and clinical presentations. J Clin Microbiol 36:3291–3296[PubMed]
    [Google Scholar]
  90. Rotger R., Casadesús J. ( 1999). The virulence plasmids of Salmonella . Int Microbiol 2:177–184[PubMed]
    [Google Scholar]
  91. Rychlík I., Gregorova D., Hradecka H. ( 2006). Distribution and function of plasmids in Salmonella enterica . Vet Microbiol 112:1–10 [View Article][PubMed]
    [Google Scholar]
  92. Rychlík I., Hradecka H., Malcova M. ( 2008). Salmonella enterica serovar Typhimurium typing by prophage-specific PCR. Microbiology 154:1384–1389 [View Article][PubMed]
    [Google Scholar]
  93. Rychlík I., Karasova D., Sebkova A., Volf J., Sisak F., Havlickova H., Kummer V., Imre A., Szmolka A., Nagy B. ( 2009). Virulence potential of five major pathogenicity islands (SPI-1 to SPI-5) of Salmonella enterica serovar Enteritidis for chickens. BMC Microbiol 9:268 [View Article][PubMed]
    [Google Scholar]
  94. Saeed A. M., Walk S. T., Arshad M., Whittam T. S. ( 2006). Clonal structure and variation in virulence of Salmonella enteritidis isolated from mice, chickens, and humans. J AOAC Int 89:504–511[PubMed]
    [Google Scholar]
  95. Sneath P. H., Sokal R. R. ( 1973). Numeral Taxonomy San Francisco: W. H. Freeman;
    [Google Scholar]
  96. Snow L. C., Davies R. H., Christiansen K. H., Carrique-Mas J. J., Wales A. D., O’Connor J. L., Cook A. J., Evans S. J. ( 2007). Survey of the prevalence of Salmonella species on commercial laying farms in the United Kingdom. Vet Rec 161:471–476 [View Article][PubMed]
    [Google Scholar]
  97. Solano C., Sesma B., Alvarez M., Humphrey T. J., Thorns C. J., Gamazo C. ( 1998). Discrimination of strains of Salmonella enteritidis with differing levels of virulence by an in vitro glass adherence test. J Clin Microbiol 36:674–678[PubMed]
    [Google Scholar]
  98. Solano C., Sesma B., Alvarez M., Urdaneta E., Garcia-Ros D., Calvo A., Gamazo C. ( 2001). Virulent strains of Salmonella enteritidis disrupt the epithelial barrier of Caco-2 and HEp-2 cells. Arch Microbiol 175:46–51 [View Article][PubMed]
    [Google Scholar]
  99. Solano C., García B., Valle J., Berasain C., Ghigo J. M., Gamazo C., Lasa I. ( 2002). Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose. Mol Microbiol 43:793–808 [View Article][PubMed]
    [Google Scholar]
  100. Soto S. M., González-Hevia M. A., Mendoza M. C. ( 2003). Antimicrobial resistance in clinical isolates of Salmonella enterica serotype Enteritidis: relationships between mutations conferring quinolone resistance, integrons, plasmids and genetic types. J Antimicrob Chemother 51:1287–1291 [View Article][PubMed]
    [Google Scholar]
  101. Soto S. M., Rodríguez I., Rodicio M. R., Vila J., Mendoza M. C. ( 2006). Detection of virulence determinants in clinical strains of Salmonella enterica serovar Enteritidis and mapping on macrorestriction profiles. J Med Microbiol 55:365–373 [View Article][PubMed]
    [Google Scholar]
  102. Suzuki S. ( 1994). Pathogenicity of Salmonella enteritidis in poultry. Int J Food Microbiol 21:89–105 [View Article][PubMed]
    [Google Scholar]
  103. Swaminathan B., Barrett T. J., Hunter S. B., Tauxe R. V. CDC PulseNet Task Force ( 2001). PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7:382–389[PubMed] [CrossRef]
    [Google Scholar]
  104. Tena D., González-Praetorius A., Bisquert J. ( 2007). Urinary tract infection due to non-typhoidal Salmonella: report of 19 cases. J Infect 54:245–249 [View Article][PubMed]
    [Google Scholar]
  105. Tezcan-Merdol D., Nyman T., Lindberg U., Haag F., Koch-Nolte F., Rhen M. ( 2001). Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. Mol Microbiol 39:606–619 [View Article][PubMed]
    [Google Scholar]
  106. Trafny E. A., Kozłowska K., Szpakowska M. ( 2006). A novel multiplex PCR assay for the detection of Salmonella enterica serovar Enteritidis in human faeces. Lett Appl Microbiol 43:673–679 [View Article][PubMed]
    [Google Scholar]
  107. van Asten F. J., Hendriks H. G., Koninkx J. F., Van der Zeijst B. A., Gaastra W. ( 2000). Inactivation of the flagellin gene of Salmonella enterica serotype Enteritidis strongly reduces invasion into differentiated Caco-2 cells. FEMS Microbiol Lett 185:175–179 [View Article][PubMed]
    [Google Scholar]
  108. van Asten F. J., Hendriks H. G., Koninkx J. F., van Dijk J. E. ( 2004). Flagella-mediated bacterial motility accelerates but is not required for Salmonella serotype Enteritidis invasion of differentiated Caco-2 cells. Int J Med Microbiol 294:395–399 [View Article][PubMed]
    [Google Scholar]
  109. Velge P., Cloeckaert A., Barrow P. ( 2005). Emergence of Salmonella epidemics: the problems related to Salmonella enterica serotype Enteritidis and multiple antibiotic resistance in other major serotypes. Vet Res 36:267–288 [View Article][PubMed]
    [Google Scholar]
  110. Winter S. E., Raffatellu M., Wilson R. P., Rüssmann H., Bäumler A. J. ( 2008). The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cell Microbiol 10:247–261[PubMed]
    [Google Scholar]
  111. Winter S. E., Winter M. G., Godinez I., Yang H. J., Rüssmann H., Andrews-Polymenis H. L., Bäumler A. J. ( 2010). A rapid change in virulence gene expression during the transition from the intestinal lumen into tissue promotes systemic dissemination of Salmonella . PLoS Pathog 6:e1001060 [View Article][PubMed]
    [Google Scholar]
  112. Wisner A. L., Desin T. S., Koch B., Lam P. K., Berberov E. M., Mickael C. S., Potter A. A., Koster W. ( 2010). Salmonella enterica subspecies enterica serovar Enteritidis Salmonella pathogenicity island 2 type III secretion system: role in intestinal colonization of chickens and systemic spread. Microbiology 156:2770–2781 [View Article][PubMed]
    [Google Scholar]
  113. Yim L., Betancor L., Martinez A., Giossa G., Bryant C., Maskell D., Chabalgoity J. A. ( 2010). Differential phenotypic diversity among epidemic-spanning Salmonella enterica serovar enteritidis isolates from humans or animals. Appl Environ Microbiol 76:6812–6820 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044461-0
Loading
/content/journal/micro/10.1099/mic.0.044461-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error