1887

Abstract

Owing to its high resistance to weak-acid preservatives and extreme osmotolerance, is one of the main spoilage yeasts of sweet foods and beverages. In contrast with , is a fructophilic yeast; it consumes fructose faster than glucose. So far, to our knowledge, no specific proteins responsible for this fructophilic behaviour have been characterized. We have identified two genes encoding putative fructose transporters in the CBS 732 genome. Heterologous expression of these two ORFs in a strain lacking its own hexose transporters (-null) and subsequent kinetic analysis of sugar transport showed that both proteins are functionally expressed at the plasma membrane: Ffz1 is a high-capacity fructose-specific facilitator ( ∼400 mM and ∼13 mmol h g) and Ffz2 is a facilitator transporting glucose and fructose with similar capacity and affinity ( ∼200 mM and ∼4 mmol h g). These two proteins together with the Ffz1 fructose-specific transporter belong to a new family of sugar transport systems mediating the uptake of hexoses via the facilitated diffusion mechanism, and are more homologous to drug/H antiporters (regarding their primary protein structure) than to other yeast sugar transporters of the Sugar Porter family.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044446-0
2011-02-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/601.html?itemId=/content/journal/micro/10.1099/mic.0.044446-0&mimeType=html&fmt=ahah

References

  1. Boles, E. & Hollenberg, C. P. ( 1997; ). The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21, 85–111.[CrossRef]
    [Google Scholar]
  2. Deák, T. ( 2007; ). Yeasts in specific types of foods. In Handbook of Food Spoilage Yeasts, 2nd edn, pp. 117–201. Edited by Deák, T.. Boca Raton. : CRC Press.
    [Google Scholar]
  3. Diezemann, A. & Boles, E. ( 2003; ). Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis. Curr Genet 43, 281–288.[CrossRef]
    [Google Scholar]
  4. Doehlemann, G., Molitor, F. & Hahn, M. ( 2005; ). Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea. Fungal Genet Biol 42, 601–610.[CrossRef]
    [Google Scholar]
  5. Edgar, R. C. ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef]
    [Google Scholar]
  6. Emmerich, W. & Radler, F. ( 1983; ). The anaerobic metabolism of glucose and fructose by Saccharomyces bailii. J Gen Microbiol 129, 3311–3318.
    [Google Scholar]
  7. Entian, K.-D. & Kötter, P. ( 2007; ). 25 yeast genetic strain and plasmid collections. In Methods in Microbiology, vol. 36, pp. 629–666. Edited by Ian, S. & Michael, J. R. S.. London. : Academic Press.
    [Google Scholar]
  8. Felsenstein, R. C. ( 2005; ). phylip (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  9. Fuhrmann, G. F., Storch, D., Bode, H.-P. & Völker, B. ( 1992; ). Inhibition of glucose transport in Saccharomyces cerevisiae by uranyl ions. J Biotechnol 27, 75–84.[CrossRef]
    [Google Scholar]
  10. Gonçalves, P., Rodrigues de Sousa, H. & Spencer-Martins, I. ( 2000; ). FSY1, a novel gene encoding a specific fructose/H+ symporter in the type strain of Saccharomyces carlsbergensis. J Bacteriol 182, 5628–5630.[CrossRef]
    [Google Scholar]
  11. Hill, J. E., Myers, A. M., Koerner, T. J. & Tzagoloff, A. ( 1986; ). Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2, 163–167.[CrossRef]
    [Google Scholar]
  12. Hoffman, C. S. & Winston, F. ( 1987; ). A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57, 267–272.[CrossRef]
    [Google Scholar]
  13. Kinclová, O., Ramos, J., Potier, S. & Sychrová, H. ( 2001; ). Functional study of the Saccharomyces cerevisiae Nha1p C-terminus. Mol Microbiol 40, 656–668.[CrossRef]
    [Google Scholar]
  14. Kinclová-Zimmermannová, O., Zavrel, M. & Sychrová, H. ( 2005; ). Identification of conserved prolyl residue important for transport activity and the substrate specificity range of yeast plasma membrane Na+/H+ antiporters. J Biol Chem 280, 30638–30647.[CrossRef]
    [Google Scholar]
  15. Leandro, M. J., Fonseca, C. & Gonçalves, P. ( 2009; ). Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res 9, 511–525.[CrossRef]
    [Google Scholar]
  16. Loureiro-Dias, M. C. & Peinado, J. M. ( 1984; ). Transport of maltose in Saccharomyces cerevisiae. Effect of pH and potassium ions. Biochem J 222, 293–298.
    [Google Scholar]
  17. Marešová, L. & Sychrová, H. ( 2007; ). Applications of a microplate reader in yeast physiology research. Biotechniques 43, 667–672.[CrossRef]
    [Google Scholar]
  18. Martorell, P., Stratford, M., Steels, H., Fernández-Espinar, M. T. & Querol, A. ( 2007; ). Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Int J Food Microbiol 114, 234–242.[CrossRef]
    [Google Scholar]
  19. Page, R. D. ( 1996; ). TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  20. Pina, C., Gonçalves, P., Prista, C. & Loureiro-Dias, M. C. ( 2004; ). Ffz1, a new transporter specific for fructose from Zygosaccharomyces bailii. Microbiology 150, 2429–2433.[CrossRef]
    [Google Scholar]
  21. Saier, M. H., Jr, Yen, M. R., Noto, K., Tamang, D. G. & Elkan, C. ( 2009; ). The Transporter Classification Database: recent advances. Nucleic Acids Res 37, D274–D278.[CrossRef]
    [Google Scholar]
  22. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  23. Sherman, D. J., Martin, T., Nikolski, M., Cayla, C., Souciet, J. L. & Durrens, P. ( 2009; ). Génolevures: protein families and synteny among complete hemiascomycetous yeast proteomes and genomes. Nucleic Acids Res 37, D550–D554.[CrossRef]
    [Google Scholar]
  24. Sousa-Dias, S., Gonçalves, T., Leyva, J. S., Peinado, J. M. & Loureiro-Dias, M. C. ( 1996; ). Kinetics and regulation of fructose and glucose transport systems are responsible for fructophily in Zygosaccharomyces bailii. Microbiology 142, 1733–1738.[CrossRef]
    [Google Scholar]
  25. Tusnády, G. E. & Simon, I. ( 2001; ). The hmmtop transmembrane topology prediction server. Bioinformatics 17, 849–850.[CrossRef]
    [Google Scholar]
  26. Wieczorke, R., Krampe, S., Weierstall, T., Freidel, K., Hollenberg, C. P. & Boles, E. ( 1999; ). Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464, 123–128.[CrossRef]
    [Google Scholar]
  27. Zaragoza, O. ( 2003; ). Generation of disruption cassettes in vivo using a PCR product and Saccharomyces cerevisiae. J Microbiol Methods 52, 141–145.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044446-0
Loading
/content/journal/micro/10.1099/mic.0.044446-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error