1887

Abstract

Oxidative and nitrosative stresses including nitric oxide (NO), superoxide () and peroxynitrite play key roles in determining the outcome of bacterial infections. In order to survive within the host and allow proliferation within immune cells such as macrophages, isolates have a number of inducible proteins that are able to detoxify these highly reactive species, notably the anoxically functioning NO reductase NorVW, and the aerobically functioning flavohaemoglobin, Hmp, which catalyses the reaction between oxygen and NO to produce relatively inert nitrate. However, in the absence of NO but in the presence of reducing substrates and oxygen, is generated from Hmp-mediated electron transfer to bound oxygen and may form a variety of further oxidative species. Hence, Hmp expression is under tight negative regulation by the transcription factor NsrR, abolition of which causes an increase in the production of Hmp. In a previous study, this increase in Hmp levels conferred resistance to the nitrosating agent -nitrosoglutathione but, perhaps surprisingly, the organism became more sensitive to killing by macrophages. Here, we report that an mutant that constitutively overexpresses Hmp is also hypersensitive to peroxynitrite . This sensitivity is alleviated by deletion of the gene or pre-incubation of growing bacteria with NO-releasing agents. We hypothesize that Hmp-expressing cells, in the absence of NO, generate reactive oxygen species, the toxicity of which is exacerbated by peroxynitrite and in macrophages. RT-PCR confirmed that peroxynitrite causes oxidative stress and upregulation of and , whilst and expression are affected very little. The gene upregulated by peroxynitrite encodes a catalase peroxidase enzyme with well-established roles in detoxifying peroxides. Here, we report that KatG is also able to enhance the breakdown of peroxynitrite, suggesting that the protective role of this enzyme may be wider than previously thought. These data suggest that spatial and temporal fluctuations in the levels of NO and reactive oxygen species will have important consequences for bacterial survival in the macrophage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044214-0
2010-12-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3556.html?itemId=/content/journal/micro/10.1099/mic.0.044214-0&mimeType=html&fmt=ahah

References

  1. Acosta, F., Real, F., de Galarreta, C. M. R., Diaz, R., Padilla, D. & Ellis, A. E. ( 2003; ). Toxicity of nitric oxide and peroxynitrite to Photobacterium damselae subsp. piscicida. Fish Shellfish Immunol 15, 241–248.[CrossRef]
    [Google Scholar]
  2. Alvarez, M. N., Piacenza, L., Irigoin, F., Peluffo, G. & Radi, R. ( 2004; ). Macrophage-derived peroxynitrite diffusion and toxicity to Trypanosoma cruzi. Arch Biochem Biophys 432, 222–232.[CrossRef]
    [Google Scholar]
  3. Beckman, J. S. & Koppenol, W. H. ( 1996; ). Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. Am J Physiol 271, C1424–C1437.
    [Google Scholar]
  4. Bodenmiller, D. M. & Spiro, S. ( 2006; ). The yjeB (nsrR) gene of Escherichia coli encodes a nitric oxide-sensitive transcriptional regulator. J Bacteriol 188, 874–881.[CrossRef]
    [Google Scholar]
  5. Brunelli, L., Crow, J. P. & Beckman, J. S. ( 1995; ). The comparative toxicity of nitric oxide and peroxynitrite to Escherichia coli. Arch Biochem Biophys 316, 327–334.[CrossRef]
    [Google Scholar]
  6. Bryk, R., Griffin, P. & Nathan, C. ( 2000; ). Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215.[CrossRef]
    [Google Scholar]
  7. Buchmeier, N. A., Libby, S. J., Xu, Y. S., Loewen, P. C., Switala, J., Guiney, D. G. & Fang, F. C. ( 1995; ). DNA-repair is more important than catalase for Salmonella virulence in mice. J Clin Invest 95, 1047–1053.[CrossRef]
    [Google Scholar]
  8. Claiborne, A. & Fridovich, I. ( 1979; ). Purification of the ortho-dianisidine peroxidase from Escherichia coli B. Physiochemical characterization and analysis of its dual catalatic and peroxidatic activities. J Biol Chem 254, 4245–4252.
    [Google Scholar]
  9. Crawford, M. J. & Goldberg, D. E. ( 1998; ). Role for the Salmonella flavohemoglobin in protection from nitric oxide. J Biol Chem 273, 12543–12547.[CrossRef]
    [Google Scholar]
  10. Crow, J. P. ( 1999; ). Manganese and iron porphyrins catalyze peroxynitrite decomposition and simultaneously increase nitration and oxidant yield: implications for their use as peroxynitrite scavengers in vivo. Arch Biochem Biophys 371, 41–52.[CrossRef]
    [Google Scholar]
  11. Cruz-Ramos, H., Crack, J., Wu, G. G., Hughes, M. N., Scott, C., Thomson, A. J., Green, J. & Poole, R. K. ( 2002; ). NO sensing by FNR: regulation of the Escherichia coli NO-detoxifying flavohaemoglobin, Hmp. EMBO J 21, 3235–3244.[CrossRef]
    [Google Scholar]
  12. D'Autreaux, B., Touati, D., Bersch, B., Latour, J. M. & Michaud-Soret, I. ( 2002; ). Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proc Natl Acad Sci U S A 99, 16619–16624.[CrossRef]
    [Google Scholar]
  13. Ferrer-Sueta, G. & Radi, R. ( 2009; ). Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. ACS Chem Biol 4, 161–177.[CrossRef]
    [Google Scholar]
  14. Flatley, J., Barrett, J., Pullan, S. T., Hughes, M. N., Green, J. & Poole, R. K. ( 2005; ). Transcriptional responses of Escherichia coli to S-nitrosoglutathione under defined chemostat conditions reveal major changes in methionine biosynthesis. J Biol Chem 280, 10065–10072.[CrossRef]
    [Google Scholar]
  15. Fridovich, I. ( 1995; ). Superoxide radical and superoxide dismutases. Annu Rev Biochem 64, 97–112.[CrossRef]
    [Google Scholar]
  16. Gardner, P. R., Gardner, A. M., Martin, L. A. & Salzman, A. L. ( 1998; ). Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci U S A 95, 10378–10383.[CrossRef]
    [Google Scholar]
  17. Gardner, A. M., Martin, L. A., Gardner, P. R., Dou, Y. & Olson, J. S. ( 2000; ). Steady-state and transient kinetics of Escherichia coli nitric-oxide dioxygenase (flavohemoglobin) – the B10 tyrosine hydroxyl is essential for dioxygen binding and catalysis. J Biol Chem 275, 12581–12589.[CrossRef]
    [Google Scholar]
  18. Gebicka, L. & Didik, J. ( 2009; ). Catalytic scavenging of peroxynitrite by catalase. J Inorg Biochem 103, 1375–1379.[CrossRef]
    [Google Scholar]
  19. Gergel, D., Misik, V., Ondrias, K. & Cederbaum, A. I. ( 1995; ). Increased cytotoxicity of 3-morpholinosydnonimine to HEPG2 cells in the presence of superoxide dismutase – role of hydrogen peroxide and iron. J Biol Chem 270, 20922–20929.[CrossRef]
    [Google Scholar]
  20. Gilberthorpe, N. J., Lee, M. E., Stevanin, T. M., Read, R. C. & Poole, R. K. ( 2007; ). NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-γ-stimulated J774.2 macrophages. Microbiology 153, 1756–1771.[CrossRef]
    [Google Scholar]
  21. Hausladen, A., Gow, A. J. & Stamler, J. S. ( 1998; ). Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc Natl Acad Sci U S A 95, 14100–14105.[CrossRef]
    [Google Scholar]
  22. Hausladen, A., Gow, A. & Stamler, J. S. ( 2001; ). Flavohemoglobin denitrosylase catalyzes the reaction of a nitroxyl equivalent with molecular oxygen. Proc Natl Acad Sci U S A 98, 10108–10112.[CrossRef]
    [Google Scholar]
  23. Hébrard, M., Viala, J. P. M., Meresse, P., Barras, F. & Aussel, L. ( 2009; ). Redundant hydrogen peroxide scavengers contribute to Salmonella virulence and oxidative stress resistance. J Bacteriol 191, 4605–4614.[CrossRef]
    [Google Scholar]
  24. Hernández-Urzúa, E., Zamorano-Sanchez, D. S., Ponce-Coria, J., Morett, E., Grogan, S., Poole, R. K. & Membrillo-Hernández, J. ( 2007; ). Multiple regulators of the flavohaemoglobin (hmp) gene of Salmonella enterica serovar Typhimurium include RamA, a transcriptional regulator conferring the multidrug resistance phenotype. Arch Microbiol 187, 67–77.
    [Google Scholar]
  25. Hughes, M. N. & Nicklin, H. G. ( 1968; ). The chemistry of pernitrites. Part I. Kinetics of decomposition of pernitrous acid. J Chem Soc A 3, 450–452.
    [Google Scholar]
  26. Huie, R. E. & Padmaja, S. ( 1993; ). The reaction of NO with superoxide. Free Radic Res Commun 18, 195–199.[CrossRef]
    [Google Scholar]
  27. Ischiropoulos, H., Zhu, L. & Beckman, J. S. ( 1992; ). Peroxynitrite formation from macrophage derived nitric oxide. Arch Biochem Biophys 298, 446–451.[CrossRef]
    [Google Scholar]
  28. Ishii, M., Shimizu, S., Momose, K. & Yamamoto, T. ( 1999; ). SIN-1-induced cytotoxicity in cultured endothelial cells involves reactive oxygen species and nitric oxide: protective effect of sepiapterin. J Cardiovasc Pharmacol 33, 295–300.[CrossRef]
    [Google Scholar]
  29. Jourd'heuil, D., Jourd'heuil, F. L., Kutchukian, P. S., Musah, R. A., Wink, D. A. & Grisham, M. B. ( 2001; ). Reaction of superoxide and nitric oxide with peroxynitrite – implications for peroxynitrite-mediated oxidation reactions in vivo. J Biol Chem 276, 28799–28805.[CrossRef]
    [Google Scholar]
  30. Kikugawa, K., Hiramoto, K. & Ohkawa, T. ( 2004; ). Effects of oxygen on the reactivity of nitrogen oxide species including peroxynitrite. Biol Pharm Bull 27, 17–23.[CrossRef]
    [Google Scholar]
  31. Kim, S. O., Orii, Y., Lloyd, D., Hughes, M. N. & Poole, R. K. ( 1999; ). Anoxic function for the Escherichia coli flavohaemoglobin (Hmp): reversible binding of nitric oxide and reduction to nitrous oxide. FEBS Lett 445, 389–394.[CrossRef]
    [Google Scholar]
  32. Konishi, K., Watanabe, N. & Arai, T. ( 2009; ). SIN-1 cytotoxicity to PC12 cells is mediated by thiol-sensitive short-lived substances generated through SIN-1 decomposition in culture medium. Nitric Oxide 20, 270–278.[CrossRef]
    [Google Scholar]
  33. Lepore, D. A., Stewart, A. G., Tomasi, A., Anderson, R. L., Hurley, J. V. & Morrison, W. A. ( 1999; ). The survival of skeletal muscle myoblasts in vitro is sensitive to a donor of nitric oxide and superoxide, SIN-1, but not to nitric oxide or peroxynitrite alone. Nitric Oxide 3, 273–280.[CrossRef]
    [Google Scholar]
  34. Liu, L. M., Zeng, M., Hausladen, A., Heitman, J. & Stamler, J. S. ( 2000; ). Protection from nitrosative stress by yeast flavohemoglobin. Proc Natl Acad Sci U S A 97, 4672–4676.[CrossRef]
    [Google Scholar]
  35. Makino, M., Kawai, M., Kawamura, I., Fujita, M., Gejo, F. & Mitsuyama, M. ( 2005; ). Involvement of reactive oxygen intermediate in the enhanced expression of virulence-associated genes of Listeria monocytogenes inside activated macrophages. Microbiol Immunol 49, 805–811.[CrossRef]
    [Google Scholar]
  36. McLean, S., Bowman, L. A. H. & Poole, R. K. ( 2010a; ). KatG from Salmonella Typhimurium is a peroxynitritase. FEBS Lett 584, 1628–1632.[CrossRef]
    [Google Scholar]
  37. McLean, S., Bowman, L. A. H., Sanguinetti, G., Read, R. C. & Poole, R. K. ( 2010b; ). Peroxynitrite toxicity in Escherichia coli K12 elicits expression of oxidative stress responses and protein nitration and nitrosylation. J Biol Chem 285, 20724–20731.[CrossRef]
    [Google Scholar]
  38. Membrillo-Hernández, J., Ioannidis, N. & Poole, R. K. ( 1996; ). The flavohaemoglobin (HMP) of Escherichia coli generates superoxide in vitro and causes oxidative stress in vivo. FEBS Lett 382, 141–144.[CrossRef]
    [Google Scholar]
  39. Membrillo-Hernández, J., Coopamah, M. D., Channa, A., Hughes, M. N. & Poole, R. K. ( 1998; ). A novel mechanism for upregulation of the Escherichia coli K-12 hmp (flavohaemoglobin) gene by the ‘NO releaser’, S-nitrosoglutathione: nitrosation of homocysteine and modulation of MetR binding to the glyAhmp intergenic region. Mol Microbiol 29, 1101–1112.[CrossRef]
    [Google Scholar]
  40. Miao, L. & St Clair, D. K. ( 2009; ). Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47, 344–356.[CrossRef]
    [Google Scholar]
  41. Orii, Y., Ioannidis, N. & Poole, R. K. ( 1992; ). The oxygenated flavohaemoglobin from Escherichia coli – evidence from photodissociation and rapid-scan studies for 2 kinetic and spectral forms. Biochem Biophys Res Commun 187, 94–100.[CrossRef]
    [Google Scholar]
  42. Poole, R. K. & Hughes, M. N. ( 2000; ). New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol Microbiol 36, 775–783.[CrossRef]
    [Google Scholar]
  43. Poole, R. K., Anjum, M. F., Membrillo-Hernández, J., Kim, S. O., Hughes, M. N. & Stewart, V. ( 1996; ). Nitric oxide, nitrite, and fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178, 5487–5492.
    [Google Scholar]
  44. Prost, L. R., Sanowar, S. & Miller, S. I. ( 2007; ). Salmonella sensing of anti-microbial mechanisms to promote survival within macrophages. Immunol Rev 219, 55–65.[CrossRef]
    [Google Scholar]
  45. Pullan, S. T., Gidley, M. D., Jones, R. A., Barrett, J., Stevanin, T. A., Read, R. C., Green, J. & Poole, R. K. ( 2007; ). Nitric oxide in chemostat-cultured Escherichia coli is sensed by Fnr and other global regulators: unaltered methionine biosynthesis indicates lack of S nitrosation. J Bacteriol 189, 1845–1855.[CrossRef]
    [Google Scholar]
  46. Rodionov, D. A., Dubchak, I. L., Arkin, A. P., Alm, E. J. & Gelfand, M. S. ( 2005; ). Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks. PLOS Comput Biol 1, e55.[CrossRef]
    [Google Scholar]
  47. Saha, A., Goldstein, S., Cabelli, D. & Czapski, G. ( 1998; ). Determination of optimal conditions for synthesis of peroxynitrite by mixing acidified hydrogen peroxide with nitrite. Free Radic Biol Med 24, 653–659.[CrossRef]
    [Google Scholar]
  48. Sahoo, R., Bhattacharjee, A., Majumdar, U., Ray, S. S., Dutta, T. & Ghosh, S. ( 2009; ). A novel role of catalase in detoxification of peroxynitrite in S. cerevisiae. Biochem Biophys Res Commun 385, 507–511.[CrossRef]
    [Google Scholar]
  49. Sambrook, J. & Russell, D. W. ( 2001; ). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  50. Spiro, S. ( 2007; ). Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev 31, 193–211.[CrossRef]
    [Google Scholar]
  51. Stevanin, T. M., Poole, R. K., Demoncheaux, E. A. G. & Read, R. C. ( 2002; ). Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infect Immun 70, 4399–4405.[CrossRef]
    [Google Scholar]
  52. Vazquez-Torres, A. & Fang, F. C. ( 2001; ). Oxygen-dependent anti-Salmonella activity of macrophages. Trends Microbiol 9, 29–33.[CrossRef]
    [Google Scholar]
  53. Volk, T., Ioannidis, I., Hensel, M., Degroot, H. & Kox, W. J. ( 1995; ). Endothelial damage induced by nitric oxide – synergism with reactive oxygen species. Biochem Biophys Res Commun 213, 196–203.[CrossRef]
    [Google Scholar]
  54. Wengenack, N. L., Jensen, M. P., Rusnak, F. & Stern, M. K. ( 1999; ). Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem Biophys Res Commun 256, 485–487.[CrossRef]
    [Google Scholar]
  55. Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J.-C., Williams, K. L., Appel, R. D., Hochstrasser, D. F. & Link, A. J. ( 1999; ). Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112, 531–552.
    [Google Scholar]
  56. Wu, G. H., Corker, H., Orii, Y. & Poole, R. K. ( 2004; ). Escherichia coli Hmp, an “oxygen-binding flavohaemoprotein”, produces superoxide anion and self-destructs. Arch Microbiol 182, 193–203.
    [Google Scholar]
  57. Zhu, L., Gunn, C. & Beckman, J. S. ( 1992; ). Bactericidal activity of peroxynitrite. Arch Biochem Biophys 298, 452–457.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044214-0
Loading
/content/journal/micro/10.1099/mic.0.044214-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error