1887

Abstract

The mucosal layers colonized by the pathogenic fungus differ widely in ambient pH. Because the properties and functions of wall proteins are probably pH dependent, we hypothesized that adapts its wall proteome to the external pH. We developed an system that mimics colonization of mucosal surfaces by growing biomats at pH 7 and 4 on semi-solid agarose containing mucin as the sole nitrogen source. The biomats expanded radially for at least 8 days at a rate of ∼30 μm h. At pH 7, hyphal growth predominated and growth was invasive, whereas at pH 4 only yeast and pseudohyphal cells were present and growth was noninvasive. Both qualitative mass spectrometric analysis of the wall proteome by tandem mass spectrometry and relative quantification of individual wall proteins (pH 7/pH 4), using Fourier transform mass spectrometry (FT-MS) and a reference mixture of N-labelled yeast and hyphal walls, identified similar sets of >20 covalently linked wall proteins. The adhesion proteins Als1 and Als3, Hyr1, the transglucosidase Phr1, the detoxification enzyme Sod5 and the mammalian transglutaminase substrate Hwp1 (immunological detection) were only present at pH 7, whereas at pH 4 the level of the transglucosidase Phr2 was >35-fold higher than at pH 7. Sixteen out of the 22 proteins identified by FT-MS showed a greater than twofold change. These results demonstrate that ambient pH strongly affects the wall proteome of , show that our quantitative approach can give detailed insights into the dynamics of the wall proteome, and point to potential vaccine targets.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044206-0
2011-01-01
2020-05-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/136.html?itemId=/content/journal/micro/10.1099/mic.0.044206-0&mimeType=html&fmt=ahah

References

  1. Aebersold R., Mann M.. 2003; Mass spectrometry-based proteomics. Nature422:198–207
    [Google Scholar]
  2. Almeida R. S., Brunke S., Albrecht A., Thewes S., Laue M., Edwards J. E., Filler S. G., Hube B.. 2008; The hyphal-associated adhesin and invasin Als3 of Candida albicans mediates iron acquisition from host ferritin. PLoS Pathog4:e1000217
    [Google Scholar]
  3. Bensen E. S., Martin S. J., Li M., Berman J., Davis D. A.. 2004; Transcriptional profiling in Candida albicans reveals new adaptive responses to extracellular pH and functions for Rim101p. Mol Microbiol54:1335–1351
    [Google Scholar]
  4. Blankenship J. R., Mitchell A. P.. 2006; How to build a biofilm: a fungal perspective. Curr Opin Microbiol9:588–594
    [Google Scholar]
  5. Butler G., Rasmussen M. D., Lin M. F., Santos M. A., Sakthikumar S., Munro C. A., Rheinbay E., Grabherr M., Forche A.. other authors 2009; Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature459:657–662
    [Google Scholar]
  6. Cannon R. D., Chaffin W. L.. 1999; Oral colonization by Candida albicans . Crit Rev Oral Biol Med10:359–383
    [Google Scholar]
  7. Castillo L., Calvo E., Martínez A. I., Ruiz-Herrera J., Valentín E., Lopez J. A., Sentandreu R.. 2008; A study of the Candida albicans cell wall proteome. Proteomics8:3871–3881
    [Google Scholar]
  8. Chaffin W. L.. 2008; Candida albicans cell wall proteins. Microbiol Mol Biol Rev72:495–544
    [Google Scholar]
  9. Cheng G., Wozniak K., Wallig M. A., Fidel P. L. Jr, Trupin S. R., Hoyer L. L.. 2005; Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun73:1656–1663
    [Google Scholar]
  10. Colina A. R., Aumont F., Deslauriers N., Belhumeur P., de Repentigny L.. 1996; Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun64:4514–4519
    [Google Scholar]
  11. Davis D. A.. 2009; How human pathogenic fungi sense and adapt to pH: the link to virulence. Curr Opin Microbiol12:365–370
    [Google Scholar]
  12. De Bernardis F., Mühlschlegel F. A., Cassone A., Fonzi W. A.. 1998; The pH of the host niche controls gene expression in and virulence of Candida albicans . Infect Immun66:3317–3325
    [Google Scholar]
  13. de Boer A. D., de Groot P. W., Weindl G., Schaller M., Riedel D., Diez-Orejas R., Klis F. M., de Koster C. G., Dekker H. L.. other authors 2010; The Candida albicans cell wall protein Rhd3/Pga29 is abundant in the yeast form and contributes to virulence. Yeast27:611–624
    [Google Scholar]
  14. de Groot P. W. J., de Boer A. D., Cunningham J., Dekker H. L., de Jong L., Hellingwerf K. J., de Koster C., Klis F. M.. 2004; Proteomic analysis of Candida albicans cell walls reveals covalently bound carbohydrate-active enzymes and adhesins. Eukaryot Cell3:955–965
    [Google Scholar]
  15. Ecker M., Deutzmann R., Lehle L., Mrsă V., Tanner W.. 2006; Pir proteins of Saccharomyces cerevisiae are attached to beta-1,3-glucan by a new protein-carbohydrate linkage. J Biol Chem281:11523–11529
    [Google Scholar]
  16. Fonzi W. A.. 1999; PHR1 and PHR2 of Candida albicans encode putative glycosidases required for proper cross-linking of beta-1,3- and beta-1,6-glucans. J Bacteriol181:7070–7079
    [Google Scholar]
  17. Gantner B. N., Simmons R. M., Underhill D. M.. 2005; Dectin-1 mediates macrophage recognition of Candida albicans yeast but not filaments. EMBO J24:1277–1286
    [Google Scholar]
  18. Gow N. A. R., Gooday G. W.. 1982; Growth kinetics and morphology of colonies of the filamentous form of Candida albicans . J Gen Microbiol128:2187–2194
    [Google Scholar]
  19. Green C. B., Cheng G., Chandra J., Mukherjee P., Ghannoum M. A., Hoyer L. L.. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150:267–275
    [Google Scholar]
  20. Greenbaum D., Colangelo C., Williams K., Gerstein M.. 2003; Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol4:117
    [Google Scholar]
  21. Henrichsen J.. 1972; Bacterial surface translocation: a survey and a classification. Bacteriol Rev36:478–503
    [Google Scholar]
  22. Hernáez M. L., Ximénez-Embún P., Martínez-Gomariz M., Gutiérrez-Blázquez M. D., Nombela C., Gil C.. 2010; Identification of Candida albicans exposed surface proteins in vivo by a rapid proteomic approach. J Proteomics73:1404–1409
    [Google Scholar]
  23. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A.. 1994; Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans . Mol Microbiol14:87–99
    [Google Scholar]
  24. Ibrahim A. S., Spellberg B. J., Avanesian V., Fu Y., Edwards J. E. Jr. 2006; The anti-Candida vaccine based on the recombinant N-terminal domain of Als1p is broadly active against disseminated candidiasis. Infect Immun74:3039–3041
    [Google Scholar]
  25. Joshi K. R., Wheeler E. E., Gavin J. B.. 1973; Scanning electron microscopy of colonies of six species of Candida . J Bacteriol115:341–348
    [Google Scholar]
  26. Kadosh D., Johnson A. D.. 2005; Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell16:2903–2912
    [Google Scholar]
  27. Kapteyn J. C., Hoyer L. L., Hecht J. E., Müller W. H., Andel A., Verkleij A. J., Makarow M., Van Den Ende H., Klis F. M.. 2000; The cell wall architecture of Candida albicans wild-type cells and cell wall-defective mutants. Mol Microbiol35:601–611
    [Google Scholar]
  28. Klis F. M., Sosinska G. J., de Groot P. W. J., Brul S.. 2009; Covalently linked cell wall proteins of Candida albicans and their role in fitness and virulence. FEMS Yeast Res9:1013–1028
    [Google Scholar]
  29. Klis F. M., Brul S., de Groot P. W. J.. 2010; Covalently linked wall proteins in ascomycetous fungi. Yeast27:489–493
    [Google Scholar]
  30. Kocková-Kratochvilová A.. 1990; Yeasts and Yeast-Like Organisms Weinheim, New York: VCH;
    [Google Scholar]
  31. La Valle R., Sandini S., Gomez M. J., Mondello F., Romagnoli G., Nisini R., Cassone A.. 2000; Generation of a recombinant 65-kilodalton mannoprotein, a major antigen target of cell-mediated immune response to Candida albicans . Infect Immun68:6777–6784
    [Google Scholar]
  32. Lotz H., Sohn K., Brunner H., Muhlschlegel F. A., Rupp S.. 2004; RBR1 , a novel pH-regulated cell wall gene of Candida albicans , is repressed by RIM101 and activated by NRG1 . Eukaryot Cell3:776–784
    [Google Scholar]
  33. Luo G., Ibrahim A. S., Spellberg B., Nobile C. J., Mitchell A. P., Fu Y.. 2010; Candida albicans Hyr1p confers resistance to neutrophil killing and is a potential vaccine target. J Infect Dis201:1718–1728
    [Google Scholar]
  34. Maddi A., Bowman S. M., Free S. J.. 2009; Trifluoromethanesulfonic acid-based proteomic analysis of cell wall and secreted proteins of the ascomycetous fungi Neurospora crassa and Candida albicans . Fungal Genet Biol46:768–781
    [Google Scholar]
  35. Martchenko M., Alarco A. M., Harcus D., Whiteway M.. 2004; Superoxide dismutases in Candida albicans : transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell15:456–467
    [Google Scholar]
  36. Martinez-Lopez R., Park H., Myers C. L., Gil C., Filler S. G.. 2006; Candida albicans Ecm33p is important for normal cell wall architecture and interactions with host cells. Eukaryot Cell5:140–147
    [Google Scholar]
  37. Mrsă V., Seidl T., Gentzsch M., Tanner W.. 1997; Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O -mannosylated proteins of Saccharomyces cerevisiae . Yeast13:1145–1154
    [Google Scholar]
  38. Mühlschlegel F. A., Fonzi W. A.. 1997; PHR2 of Candida albicans encodes a functional homolog of the pH-regulated gene PHR1 with an inverted pattern of pH dependent expression. Mol Cell Biol17:5960–5967
    [Google Scholar]
  39. Müller M. Q., de Koning L. J., Schmidt A., Ihling C., Syha Y., Rau O., Mechtler K., Schubert-Zsilavecz M., Sinz A.. 2009; An innovative method to study receptor–drug interactions by mass spectrometry. J Med Chem52:2875–2879
    [Google Scholar]
  40. Naglik J., Albrecht A., Bader O., Hube B.. 2004; Candida albicans proteinases and host/pathogen interactions. Cell Microbiol6:915–926
    [Google Scholar]
  41. Nobile C. J., Nett J. E., Andes D. R., Mitchell A. P.. 2006; Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell5:1604–1610
    [Google Scholar]
  42. Nobile C. J., Schneider H. A., Nett J. E., Sheppard D. C., Filler S. G., Andes D. R., Mitchell A. P.. 2008a; Complementary adhesin function in C. albicans biofilm formation. Curr Biol18:1017–1024
    [Google Scholar]
  43. Nobile C. J., Solis N., Myers C. L., Fay A. J., Deneault J. S., Nantel A., Mitchell A. P., Filler S. G.. 2008b; Candida albicans transcription factor Rim101 mediates pathogenic interactions through cell wall functions. Cell Microbiol10:2180–2196
    [Google Scholar]
  44. Oda Y., Huang K., Cross F. R., Cowburn D., Chait B. T.. 1999; Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci U S A96:6591–6596
    [Google Scholar]
  45. Otoo H. N., Lee K. G., Qiu W., Lipke P. N.. 2008; Candida albicans Als adhesins have conserved amyloid-forming sequences. Eukaryot Cell7:776–782
    [Google Scholar]
  46. Ramsook C. B., Tan C., Garcia M. C., Fung R., Soybelman G., Henry R., Litewka A., O'Meally S., Otoo H. N.. other authors 2010; Yeast cell adhesion molecules have functional amyloid-forming sequences. Eukaryot Cell9:393–404
    [Google Scholar]
  47. Reynolds T. B., Fink G. R.. 2001; Bakers' yeast, a model for fungal biofilm formation. Science291:878–881
    [Google Scholar]
  48. Ruiz-Herrera J., Martínez A. I., Sentandreu R.. 2002; Determination of the stability of protein pools from the cell wall of fungi. Res Microbiol153:373–378
    [Google Scholar]
  49. Russo P., Kalkkinen N., Sareneva H., Paakkola J., Makarow M.. 1992; A heat shock gene from Saccharomyces cerevisiae encoding a secretory glycoprotein. Proc Natl Acad Sci U S A89:3671–3675
    [Google Scholar]
  50. Shepherd M. G., Sullivan P. A.. 1984; The control of morphogenesis in Candida albicans . J Dent Res63:435–440
    [Google Scholar]
  51. Skrzypek M. S., Arnaud M. B., Costanzo M. C., Inglis D. O., Shah P., Binkley G., Miyasato S. R., Sherlock G.. 2010; New tools at the Candida Genome Database: biochemical pathways and full-text literature search. Nucleic Acids Res38: (Database issue), D428–D432
    [Google Scholar]
  52. Sobel J. D.. 2007; Vulvovaginal candidosis. Lancet369:1961–1971
    [Google Scholar]
  53. Sohn K., Urban C., Brunner H., Rupp S.. 2003; EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol47:89–102
    [Google Scholar]
  54. Sorgo A. G., Heilmann C. J., Dekker H. L., Brul S., de Koster C. G., Klis F. M.. 2010; Mass spectrometric analysis of the secretome of Candida albicans . Yeast27:661–672
    [Google Scholar]
  55. Sosinska G. J., de Groot P. W. J., Teixeira de Mattos M. J., Dekker H. L., de Koster C. G., Hellingwerf K. J., Klis F. M.. 2008; Hypoxic conditions and iron restriction affect the cell-wall proteome of Candida albicans grown under vagina-simulative conditions. Microbiology154:510–520
    [Google Scholar]
  56. Spellberg B. J., Ibrahim A. S., Avanesian V., Fu Y., Myers C., Phan Q. T., Filler S. G., Yeaman M. R., Edwards J. E. Jr. 2006; Efficacy of the anti-Candida rAls3p-N or rAls1p-N vaccines against disseminated and mucosal candidiasis. J Infect Dis194:256–260
    [Google Scholar]
  57. Staab J. F., Ferrer C. A., Sundstrom P.. 1996; Developmental expression of a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans . J Biol Chem271:6298–6305
    [Google Scholar]
  58. Staab J. F., Bradway S. D., Fidel P. F., Sundstrom P.. 1999; Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science283:1535–1538
    [Google Scholar]
  59. Weissman Z., Kornitzer D.. 2004; A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Mol Microbiol53:1209–1220
    [Google Scholar]
  60. Xin H., Dziadek S., Bundle D. R., Cutler J. E.. 2008; Synthetic glycopeptides vaccines combining beta-mannan and peptide epitopes induce protection against candidiasis. Proc Natl Acad Sci U S A105:13526–13531
    [Google Scholar]
  61. Yin Q. Y., de Groot P. W. J., Dekker H. L., de Jong L., Klis F. M., de Koster C. G.. 2005; Comprehensive proteomic analysis of Saccharomyces cerevisiae cell walls: identification of proteins covalently attached via glycosylphosphatidylinositol remnants or mild alkali-sensitive linkages. J Biol Chem280:20894–20901
    [Google Scholar]
  62. Yin Q. Y., de Groot P. W. J., de Koster C. G., Klis F. M.. 2008; Mass spectrometry-based proteomics of fungal wall glycoproteins. Trends Microbiol16:20–26
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044206-0
Loading
/content/journal/micro/10.1099/mic.0.044206-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error