1887

Abstract

In , () encodes a serine-threonine protein kinase involved in cell cycle control and morphogenesis. Deletion of its putative orthologue in , , gives rise to sensitivity to the respiratory inhibitor antimycin A (AA). Resistance to AA on glucose (Rag phenotype) is associated with genes () required for glucose metabolism/glycolysis. To understand the relationship between and , and Δ mutant strains were investigated. The analysis showed that all the mutants contained a phosphorylated form of Hog1 and displayed an inability to synthesize/accumulate glycerol as a compatible solute. In addition, mutants also showed alterations in both cell wall and membrane fatty acids. The pleiotropic defects of these strains indicate that a common pathway regulates glucose utilization and stress response mechanisms, suggesting impaired adaptation of the plasma membrane/cell wall during the respiratory–fermentative transition. KlHsl1 could be the link between these adaptive pathways and the morphogenetic checkpoint.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.044040-0
2011-05-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1509.html?itemId=/content/journal/micro/10.1099/mic.0.044040-0&mimeType=html&fmt=ahah

References

  1. Albertyn J. , Hohmann S. , Thevelein J. M. , Prior B. A. . ( 1994; ). GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. . Mol Cell Biol 14:, 4135–4144.[PubMed]
    [Google Scholar]
  2. Ansell R. , Granath K. , Hohmann S. , Thevelein J. M. , Adler L. . ( 1997; ). The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. . EMBO J 16:, 2179–2187. [CrossRef] [PubMed]
    [Google Scholar]
  3. Bermejo C. , Rodríguez E. , García R. , Rodríguez-Peña J. M. , Rodríguez de la Concepción M. L. , Rivas C. , Arias P. , Nombela C. , Posas F. , Arroyo J. . ( 2008; ). The sequential activation of the yeast HOG and SLT2 pathways is required for cell survival to cell wall stress. . Mol Biol Cell 19:, 1113–1124. [CrossRef] [PubMed]
    [Google Scholar]
  4. Betina S. , Goffrini P. , Ferrero I. , Wésolowski-Louvel M. . ( 2001; ). RAG4 gene encodes a glucose sensor in Kluyveromyces lactis . . Genetics 158:, 541–548.[PubMed]
    [Google Scholar]
  5. Bianchi M. M. , Tizzani L. , Destruelle M. , Frontali L. , Wésolowski-Louvel M. . ( 1996; ). The ‘petite-negative’ yeast Kluyveromyces lactis has a single gene expressing pyruvate decarboxylase activity. . Mol Microbiol 19:, 27–36. [CrossRef] [PubMed]
    [Google Scholar]
  6. Billard P. , Ménart S. , Blaisonneau J. , Bolotin-Fukuhara M. , Fukuhara H. , Wésolowski-Louvel M. . ( 1996; ). Glucose uptake in Kluyveromyces lactis: role of the HGT1 gene in glucose transport. . J Bacteriol 178:, 5860–5866.[PubMed]
    [Google Scholar]
  7. Björkqvist S. , Ansell R. , Adler L. , Lidén G. . ( 1997; ). Physiological response to anaerobicity of glycerol-3-phosphate dehydrogenase mutants of Saccharomyces cerevisiae . . Appl Environ Microbiol 63:, 128–132.[PubMed]
    [Google Scholar]
  8. Blaisonneau J. , Fukuhara H. , Wésolowski-Louvel M. . ( 1997; ). The Kluyveromyces lactis equivalent of casein kinase I is required for the transcription of the gene encoding the low-affinity glucose permease. . Mol Gen Genet 253:, 469–477. [CrossRef] [PubMed]
    [Google Scholar]
  9. Bligh E. G. , Dyer W. J. . ( 1959; ). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917.[PubMed] [CrossRef]
    [Google Scholar]
  10. Blomberg A. , Adler L. . ( 1992; ). Physiology of osmotolerance in fungi. . Adv Microb Physiol 33:, 145–212. [CrossRef] [PubMed]
    [Google Scholar]
  11. Booher R. N. , Deshaies R. J. , Kirschner M. W. . ( 1993; ). Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. . EMBO J 12:, 3417–3426.[PubMed]
    [Google Scholar]
  12. Breunig K. D. , Bolotin-Fukuhara M. , Bianchi M. M. , Bourgarel D. , Falcone C. , Ferrero I. I. I , Frontali L. , Goffrini P. , Krijger J. J. , Mazzoni C. . ( 2000; ). Regulation of primary carbon metabolism in Kluyveromyces lactis . . Enzyme Microb Technol 26:, 771–780. [CrossRef] [PubMed]
    [Google Scholar]
  13. Burton J. L. , Solomon M. J. . ( 2000; ). Hsl1p, a Swe1p inhibitor, is degraded via the anaphase-promoting complex. . Mol Cell Biol 20:, 4614–4625. [CrossRef] [PubMed]
    [Google Scholar]
  14. Casey G. P. , Ingledew W. M. . ( 1986; ). Ethanol tolerance in yeasts. . Crit Rev Microbiol 13:, 219–280. [CrossRef] [PubMed]
    [Google Scholar]
  15. Clotet J. , Escoté X. , Adrover M. A. , Yaakov G. , Garí E. , Aldea M. , de Nadal E. , Posas F. . ( 2006; ). Phosphorylation of Hsl1 by Hog1 leads to a G2 arrest essential for cell survival at high osmolarity. . EMBO J 25:, 2338–2346. [CrossRef] [PubMed]
    [Google Scholar]
  16. De Deken R. H. . ( 1966; ). The Crabtree effect: a regulatory system in yeast. . J Gen Microbiol 44:, 149–156.[PubMed] [CrossRef]
    [Google Scholar]
  17. Diaz-Ruiz R. , Uribe-Carvajal S. , Devin A. , Rigoulet M. . ( 2009; ). Tumor cell energy metabolism and its common features with yeast metabolism. . Biochim Biophys Acta 1796:, 252–265.[PubMed]
    [Google Scholar]
  18. Gancedo J. M. . ( 1998; ). Yeast carbon catabolite repression. . Microbiol Mol Biol Rev 62:, 334–361.[PubMed]
    [Google Scholar]
  19. Goffrini P. . ( 2007; ). A respiratory-deficient mutation associated with high salt sensitivity in Kluyveromyces lactis . . FEM Yeast Res 7:, 180–187. [CrossRef] [PubMed]
    [Google Scholar]
  20. Goffrini P. , Algeri A. A. , Donnini C. , Wésolowski-Louvel M. , Ferrero I. . ( 1989; ). RAG1 and RAG2: nuclear genes involved in the dependence/independence on mitochondrial respiratory function for growth on sugars. . Yeast 5:, 99–106. [CrossRef] [PubMed]
    [Google Scholar]
  21. Goffrini P. , Wésolowski-Louvel M. , Ferrero I. . ( 1991; ). A phosphoglucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis . . Mol Gen Genet 228:, 401–409. [CrossRef] [PubMed]
    [Google Scholar]
  22. González-Siso M. I. , Freire-Picos M. A. , Ramil E. , González-Domínguez M. , Rodríguez Torres A. , Cerdán M. E. . ( 2000; ). Respirofermentative metabolism in Kluyveromyces lactis: Insights and perspectives. . Enzyme Microb Technol 26:, 699–705. [CrossRef] [PubMed]
    [Google Scholar]
  23. Heipieper H. J. , Isken S. , Saliola M. . ( 2000; ). Ethanol tolerance and membrane fatty acid adaptation in adh multiple and null mutants of Kluyveromyces lactis . . Res Microbiol 151:, 777–784. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hikkel I. , Gbelská Y. , van der Aart Q. J. , Lubecu G. , Subík J. . ( 1997; ). Cloning and characterization of KlCOX18, a gene required for activity of cytochrome oxidase in Kluyveromyces lactis . . Curr Genet 32:, 267–272. [CrossRef] [PubMed]
    [Google Scholar]
  25. Hnatova M. , Wésolowski-Louvel M. , Dieppois G. , Deffaud J. , Lemaire M. . ( 2008; ). Characterization of KlGRR1 and SMS1 genes, two new elements of the glucose signaling pathway of Kluyveromyces lactis . . Eukaryot Cell 7:, 1299–1308. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hohmann S. . ( 2002; ). Osmotic stress signaling and osmoadaptation in yeasts. . Microbiol Mol Biol Rev 66:, 300–372. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hohmann S. . ( 2009; ). Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae . . FEBS Lett 583:, 4025–4029. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jones R. P. , Greenfield P. F. . ( 1987; ). Ethanol and the fluidity of the yeast plasma membrane. . Yeast 3:, 223–232. [CrossRef] [PubMed]
    [Google Scholar]
  29. Kirchrath L. , Lorberg A. , Schmitz H. P. , Gengenbacher U. , Heinisch J. J. . ( 2000; ). Comparative genetic and physiological studies of the MAP kinase Mpk1p from Kluyveromyces lactis and Saccharomyces cerevisiae . . J Mol Biol 300:, 743–758. [CrossRef] [PubMed]
    [Google Scholar]
  30. Klipp E. , Nordlander B. , Krüger R. , Gennemark P. , Hohmann S. . ( 2005; ). Integrative model of the response of yeast to osmotic shock. . Nat Biotechnol 23:, 975–982. [CrossRef] [PubMed]
    [Google Scholar]
  31. Lemaire M. , Wésolowski-Louvel M. . ( 2004; ). Enolase and glycolytic flux play a role in the regulation of the glucose permease gene RAG1 of Kluyveromyces lactis . . Genetics 168:, 723–731. [CrossRef] [PubMed]
    [Google Scholar]
  32. Lew D. J. . ( 2003; ). The morphogenesis checkpoint: how yeast cells watch their figures. . Curr Opin Cell Biol 15:, 648–653. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ma X.-J. , Lu Q. , Grunstein M. . ( 1996; ). A search for proteins that interact genetically with histone H3 and H4 amino termini uncovers novel regulators of the Swe1 kinase in Saccharomyces cerevisiae . . Genes Dev 10:, 1327–1340. [CrossRef] [PubMed]
    [Google Scholar]
  34. McMillan J. N. , Longtine M. S. , Sia R. A. L. , Theesfeld C. L. , Bardes E. S. , Pringle J. R. , Lew D. J. . ( 1999; ). The morphogenesis checkpoint in Saccharomyces cerevisiae: cell cycle control of Swe1p degradation by Hsl1p and Hsl7p. . Mol Cell Biol 19:, 6929–6939.[PubMed]
    [Google Scholar]
  35. Neil H. , Lemaire M. , Wésolowski-Louvel M. . ( 2004; ). Regulation of glycolysis in Kluyveromyces lactis: role of KlGCR1 and KlGCR2 in glucose uptake and catabolism. . Curr Genet 45:, 129–139. [CrossRef] [PubMed]
    [Google Scholar]
  36. Overkamp K. M. , Bakker B. M. , Steensma H. Y. , van Dijken J. P. , Pronk J. T. . ( 2002; ). Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria. . Yeast 19:, 813–824. [CrossRef] [PubMed]
    [Google Scholar]
  37. Parks L. W. , Smith S. J. , Crowley J. H. . ( 1995; ). Biochemical and physiological effects of sterol alterations in yeast – a review. . Lipids 30:, 227–230. [CrossRef] [PubMed]
    [Google Scholar]
  38. Popolo L. , Gualtieri T. , Ragni E. . ( 2001; ). The yeast cell-wall salvage pathway. . Med Mycol 39: Suppl. 1 111–121.[PubMed] [CrossRef]
    [Google Scholar]
  39. Prentki M. , Madiraju S. R. M. . ( 2008; ). Glycerolipid metabolism and signaling in health and disease. . Endocr Rev 29:, 647–676. [CrossRef] [PubMed]
    [Google Scholar]
  40. Prior C. , Mamessier P. , Fukuhara H. , Chen X. J. , Wésolowski-Louvel M. . ( 1993; ). The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis . . Mol Cell Biol 13:, 3882–3889.[PubMed]
    [Google Scholar]
  41. Prior C. , Tizzani L. , Fukuhara H. , Wésolowski-Louvel M. . ( 1996; ). RAG3 gene and transcriptional regulation of the pyruvate decarboxylase gene in Kluyveromyces lactis . . Mol Microbiol 20:, 765–772. [CrossRef] [PubMed]
    [Google Scholar]
  42. Ptacek J. , Devgan G. , Michaud G. , Zhu H. , Zhu X. , Fasolo J. , Guo H. , Jona G. , Breitkreutz A. et al. ( 2005; ). Global analysis of protein phosphorylation in yeast. . Nature 438:, 679–684. [CrossRef] [PubMed]
    [Google Scholar]
  43. Rodicio R. , Buchwald U. , Schmitz H. P. , Heinisch J. J. . ( 2008; ). Dissecting sensor functions in cell wall integrity signaling in Kluyveromyces lactis . . Fungal Genet Biol 45:, 422–435. [CrossRef] [PubMed]
    [Google Scholar]
  44. Rubenstein E. M. , Schmidt M. C. . ( 2007; ). Mechanisms regulating the protein kinases of Saccharomyces cerevisiae . . Eukaryot Cell 6:, 571–583. [CrossRef] [PubMed]
    [Google Scholar]
  45. Serrano R. , Marquez J. A. , Rios G. . ( 1997; ). Crucial factors in salt stress tolerance.. In Yeast Stress Response, pp. 147–170. Edited by Hohmann S. , Mager W. H. . . New York:: Springer;.
    [Google Scholar]
  46. Sia R. A. L. , Bardes E. S. G. , Lew D. J. . ( 1998; ). Control of Swe1p degradation by the morphogenesis checkpoint. . EMBO J 17:, 6678–6688. [CrossRef] [PubMed]
    [Google Scholar]
  47. Steensma H. Y. , Ter Linde J. J. . ( 2001; ). Plasmids with the Cre-recombinase and the dominant nat marker, suitable for use in prototrophic strains of Saccharomyces cerevisiae and Kluyveromyces lactis . . Yeast 18:, 469–472. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tamás M. J. , Luyten K. , Sutherland F. C. W. , Hernandez A. , Albertyn J. , Valadi H. , Li H. , Prior B. A. , Kilian S. G. et al. ( 1999; ). Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. . Mol Microbiol 31:, 1087–1104. [CrossRef] [PubMed]
    [Google Scholar]
  49. Tamás M. J. , Karlgren S. , Bill R. M. , Hedfalk K. , Allegri L. , Ferreira M. , Thevelein J. M. , Rydström J. , Mullins J. G. L. , Hohmann S. . ( 2003; ). A short regulatory domain restricts glycerol transport through yeast Fps1p. . J Biol Chem 278:, 6337–6345. [CrossRef] [PubMed]
    [Google Scholar]
  50. Tanaka S. , Nojima H. . ( 1996; ). Nik1: a Nim1-like protein kinase of S. cerevisiae interacts with the Cdc28 complex and regulates cell cycle progression. . Genes Cells 1:, 905–921. [CrossRef] [PubMed]
    [Google Scholar]
  51. Uccelletti D. , Mancini P. , Farina F. , Morrone S. , Palleschi C. . ( 1999; ). Inactivation of the KIPMR1 gene of Kluyveromyces lactis results in defective cell-wall morphogenesis. . Microbiology 145:, 1079–1087. [CrossRef] [PubMed]
    [Google Scholar]
  52. Uccelletti D. , Pacelli V. , Mancini P. , Palleschi C. . ( 2000; ). vga mutants of Kluyveromyces lactis show cell integrity defects. . Yeast 16:, 1161–1171. [CrossRef] [PubMed]
    [Google Scholar]
  53. van Dijken J. P. , Scheffers W. A. . ( 1986; ). Redox balances in the metabolism of sugars by yeast. . FEMS Microbiol Letts 32:, 199–224.[CrossRef]
    [Google Scholar]
  54. Wésolowski–Louvel M. , Prior C. , Bornecque D. , Fukuhara H. . ( 1992; a). Rag mutations involved in glucose metabolism in yeast: isolation and genetic characterization. . Yeast 8:, 711–719. [CrossRef]
    [Google Scholar]
  55. Wésolowski-Louvel M. , Goffrini P. , Ferrero I. , Fukuhara H. . ( 1992; b). Glucose transport in the yeast Kluyveromyces lactis. I. Properties of an inducible low-affinity glucose transporter gene. . Mol Gen Genet 233:, 89–96.[PubMed] [CrossRef]
    [Google Scholar]
  56. Yazawa H. , Iwahashi H. , Kamisaka Y. , Kimura K. , Uemura H. . ( 2009; ). Production of polyunsaturated fatty acids in yeast Saccharomyces cerevisiae and its relation to alkaline pH tolerance. . Yeast 26:, 167–184. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.044040-0
Loading
/content/journal/micro/10.1099/mic.0.044040-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error