1887

Abstract

Transcription of genes coding for formate dehydrogenases ( genes) and hydrogenases ( genes) in and was studied following growth under different conditions. Under all conditions tested, all and genes were transcribed. However, transcription levels of the individual genes varied depending on the substrate and growth conditions. Our results strongly suggest that in syntrophically grown cells, the [FeFe]-hydrogenase (encoded by Sfum_844-46), FDH1 (Sfum_2703-06) and Hox (Sfum_2713-16) may confurcate electrons from NADH and ferredoxin to protons and carbon dioxide to produce hydrogen and formate, respectively. Based on bioinformatic analysis, a membrane-integrated energy-converting [NiFe]-hydrogenase (Mhun_1741-46) of might be involved in the energy-dependent reduction of CO to formylmethanofuran. The best candidates for F-dependent , -methyl-H MPT and , ,-methylene-HMPT reduction are the cytoplasmic [NiFe]-hydrogenase and FDH1. 16S rRNA ratios indicate that in one of the triplicate co-cultures of and , less energy was available for This led to enhanced transcription of genes coding for the Rnf-complex (Sfum_2694-99) and of several and genes. The Rnf-complex probably reoxidized NADH with ferredoxin reduction, followed by ferredoxin oxidation by the induced formate dehydrogenases and hydrogenases.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043927-0
2011-01-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/280.html?itemId=/content/journal/micro/10.1099/mic.0.043927-0&mimeType=html&fmt=ahah

References

  1. Bagos P. G., Tsirigos K. D., Plessas S. K., Liakopoulos T. D., Hamodrakas S. J. 2009; Prediction of signal peptides in archaea. Protein Eng Des Sel 22:27–35
    [Google Scholar]
  2. Bagramyan K., Trchounian A. 2003; Structural and functional features of formate hydrogen lyase, an enzyme of mixed-acid fermentation from Escherichia coli . Biochemistry (Mosc 68:1159–1170
    [Google Scholar]
  3. Burns M. J., Nixon G. J., Foy C. A., Harris N. 2005; Standardisation of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves. BMC Biotechnol 5:31
    [Google Scholar]
  4. Chabrière E., Charon M. H., Volbeda A., Pieulle L., Hatchikian E. C., Fontecilla-Camps J. C. 1999; Crystal structures of the key anaerobic enzyme pyruvate : ferredoxin oxidoreductase, free and in complex with pyruvate. Nat Struct Biol 6:182–190
    [Google Scholar]
  5. Choquet C. G., Sprott G. D. 1991; Metal chelate affinity chromatography for the purification of the F420-reducing (Ni,Fe) hydrogenase of Methanospirillum hungatei . J Microbiol Methods 13:161–169
    [Google Scholar]
  6. Costa K. C., Wong P. M., Wang T., Lie T. J., Dodsworth J. A., Swanson I., Burn J. A., Hackett M., Leigh J. A. 2010; Protein complexing in a methanogen suggests electron bifurcation and electron delivery from formate to heterodisulfide reductase. Proc Natl Acad Sci U S A 107:11050–11055
    [Google Scholar]
  7. de Bok F. A. M., Luijten M. L. G. C., Stams A. J. M. 2002a; Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei . Appl Environ Microbiol 68:4247–4252
    [Google Scholar]
  8. de Bok F. A. M., Roze E. H. A., Stams A. J. M. 2002b; Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans . Antonie van Leeuwenhoek 81:283–291
    [Google Scholar]
  9. de Bok F. A. M., Hagedoorn P. L., Silva P. J., Hagen W. R., Schiltz E., Fritsche K., Stams A. J. M. 2003; Two W-containing formate dehydrogenases (CO2-reductases) involved in syntrophic propionate oxidation by Syntrophobacter fumaroxidans . Eur J Biochem 270:2476–2485
    [Google Scholar]
  10. Dong X. Z., Stams A. J. M. 1995; Evidence for H2 and formate formation during syntrophic butyrate and propionate degradation. Anaerobe 1:35–39
    [Google Scholar]
  11. Harmsen H. J., van Kuijk B. L. M., Plugge C. M., Akkermans A. D. L., de Vos W. M., Stams A. J. M. 1998; Syntrophobacter fumaroxidans sp. nov., a syntrophic propionate-degrading sulfate-reducing bacterium. Int J Syst Bacteriol 48:1383–1387
    [Google Scholar]
  12. Heidelberg J. F., Seshadri R., Haveman S. A., Hemme C. L., Paulsen I. T., Kolonay J. F., Eisen J. A., Ward N., Methe B. other authors 2004; The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat Biotechnol 22:554–559
    [Google Scholar]
  13. Hendrickson E. L., Leigh J. A. 2008; Roles of coenzyme F420-reducing hydrogenases and hydrogen- and F420-dependent methylenetetrahydromethanopterin dehydrogenases in reduction of F420 and production of hydrogen during methanogenesis. J Bacteriol 190:4818–4821
    [Google Scholar]
  14. Kato S., Kosaka T., Watanabe K. 2009; Substrate-dependent transcriptomics shift in Pelotomaculum thermopropionicum grown in syntrophic co-culture with Methanothermobacter thermautotrophicus . Microb Biotechnol 2:575–584
    [Google Scholar]
  15. Liu W., Saint D. A. 2002; A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal Biochem 302:52–59
    [Google Scholar]
  16. McInerney M. J., Rohlin L., Mouttaki H., Kim U. M., Krupp R. S., Rios-Hernandez L., Sieber J., Struchtemeyer C. G., Bhattacharyya A. other authors 2007; The genome of Syntrophus aciditrophicus : life at the thermodynamic limit of microbial growth. Proc Natl Acad Sci U S A 104:7600–7605
    [Google Scholar]
  17. McInerney M. J., Struchtemeyer C. G., Sieber J., Mouttaki H., Stams A. J. M., Schink B., Rohlin L., Gunsalus R. P. 2008; Physiology, ecology, phylogeny, and genomics of microorganisms capable of syntrophic metabolism. Ann N Y Acad Sci 1125:58–72
    [Google Scholar]
  18. Müller N., Worm P., Schink B., Stams A. J. M., Plugge C. M. 2010; Syntrophic butyrate and propionate oxidation processes: from genomes to reaction mechanisms. Environ Microbiol Rep 2:489–499
    [Google Scholar]
  19. Odom J. M., Peck H. D. Jr 1981; Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:47–50
    [Google Scholar]
  20. Plugge C. M., Dijkema C., Stams A. J. M. 1993; Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76
    [Google Scholar]
  21. Schauer N. L., Brown D. P., Ferry J. G. 1982; Kinetics of formate metabolism in Methanobacterium formicicum and Methanospirillum hungatei . Appl Environ Microbiol 44:549–554
    [Google Scholar]
  22. Schink B., Stams A. J. M. 2006; Syntrophism among prokaryotes. Prokaryotes 2:309–335
    [Google Scholar]
  23. Schut G. J., Adams M. W. W. 2009; The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: a new perspective on anaerobic hydrogen production. J Bacteriol 191:4451–4457
    [Google Scholar]
  24. Schwörer B., Thauer R. K. 1991; Activities of formylmethanofuran dehydrogenase, methylene-tetrahydromethanopterin dehydrogenase, methylene-tetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155:459–465
    [Google Scholar]
  25. Seitz H. J., Schink B., Conrad R. 1988; Thermodynamics of hydrogen metabolism in methanogenic cocultures degrading ethanol or lactate. FEMS Microbiol Lett 55:119–124
    [Google Scholar]
  26. Sieber J. R., Sims D. R., Han C., Kim E., Lykidis A., Lapidus A. L., McDonnald E., Rohlin L., Culley D. E. other authors 2010; The genome of Syntrophomonas wolfei : new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol 12:2289–2301
    [Google Scholar]
  27. Stams A. J. M., Plugge C. M. 2009; Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol 7:568–577
    [Google Scholar]
  28. Stams A. J. M., Van Dijk J. B., Dijkema C., Plugge C. M. 1993; Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 59:1114–1119
    [Google Scholar]
  29. Suppmann B., Sawers G. 1994; Isolation and characterization of hypophosphite-resistant mutants of Escherichia coli : identification of the FocA protein, encoded by the pfl operon, as a putative formate transporter. Mol Microbiol 11:965–982
    [Google Scholar]
  30. Thauer R. K., Kaster A. K., Seedorf H., Buckel W., Hedderich R. 2008; Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6:579–591
    [Google Scholar]
  31. van Doesburg W., van Eekert M. H. A., Middeldorp P. J. M., Balk M., Schraa G., Stams A. J. M. 2005; Reductive dechlorination of β -hexachlorocyclohexane ( β -HCH) by a Dehalobacter species in coculture with a Sedimentibacter sp. FEMS Microbiol Ecol 54:87–95
    [Google Scholar]
  32. van Kuijk B. L. M., Stams A. J. M. 1996; Purification and characterization of malate dehydrogenase from the syntrophic propionate-oxidizing bacterium strain MPOB. FEMS Microbiol Lett 144:141–144
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043927-0
Loading
/content/journal/micro/10.1099/mic.0.043927-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error