Duplication of the chromosomal gene in a clinical hypermutable strain of Free

Abstract

In a collection of 110 clinical isolates of , a single strain, Kp593, was found to exhibit a mutator phenotype with a rifampicin mutation frequency 100-fold higher than the modal value for this species. Complementation experiments with the wild-type MutL, one of the main components of the methyl-directed mismatch repair system, allowed the mutator phenotype to be reversed. Sequencing revealed substitution of the conserved residue Lys307 to Arg and site-directed mutagenesis followed by complementation experiments confirmed the critical role of this mutation. The patient infected with Kp593 relapsed a month later and the strain isolated then, Kp869, was identical to Kp593, as verified by PFGE analysis. Phenotypically, Kp869 colonies were more mucoid than those of Kp593, probably due to increased capsule synthesis as shown by electron microscopy. In addition, Kp869 exhibited a 16-fold higher amoxicillin resistance level related to a 36.4 kb tandem duplication encompassing the chromosomal gene, which was unstable . These data suggest that the mutator phenotype found in Kp593/Kp869 is associated with beneficial mutations conferring a selective advantage, such as increased virulence factor production and antibiotic resistance. The latter was due to resistance gene duplication, an event rarely described in natural isolates. This is the first description of the occurrence of gene duplication in a mutator background.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043885-0
2011-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/496.html?itemId=/content/journal/micro/10.1099/mic.0.043885-0&mimeType=html&fmt=ahah

References

  1. Andersson D. I., Hughes D. 2009; Gene amplification and adaptive evolution in bacteria. Annu Rev Genet 43:167–195
    [Google Scholar]
  2. Aronshtam A., Marinus M. G. 1996; Dominant negative mutator mutations in the mutL gene of Escherichia coli . Nucleic Acids Res 24:2498–2504
    [Google Scholar]
  3. Arpin C., Dubois V., Maugein J., Jullin J., Dutilh B., Brochet J. P., Larribet G., Fischer I., Quentin C. 2005; Clinical and molecular analysis of extended-spectrum β -lactamase-producing enterobacteria in the community setting. J Clin Microbiol 43:5048–5054
    [Google Scholar]
  4. Ban C., Yang W. 1998; Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541–552
    [Google Scholar]
  5. Ban C., Junop M., Yang W. 1999; Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85–97
    [Google Scholar]
  6. Brochet M., Couve E., Zouine M., Poyart C., Glaser P. 2008; A naturally occurring gene amplification leading to sulfonamide and trimethoprim resistance in Streptococcus agalactiae . J Bacteriol 190:672–680
    [Google Scholar]
  7. Chaves J., Ladona M. G., Segura C., Coira A., Reig R., Ampurdanes C. 2001; SHV-1 β -lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae . Antimicrob Agents Chemother 45:2856–2861
    [Google Scholar]
  8. Chopra I., O'Neill A. J., Miller K. 2003; The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist Updat 6:137–145
    [Google Scholar]
  9. Courvalin P., Goldstein F., Philippon A., Sirot J. editors 1985 L'antibiogramme MPC-Vidéom; Paris, France:
    [Google Scholar]
  10. De Champs C., Rich C., Chandezon P., Chanal C., Sirot D., Forestier C. 2004; Factors associated with antimicrobial resistance among clinical isolates of Klebsiella pneumoniae : 1-year survey in a French university hospital. Eur J Clin Microbiol Infect Dis 23:456–462
    [Google Scholar]
  11. Denamur E., Matic I. 2006; Evolution of mutation rates in bacteria. Mol Microbiol 60:820–827
    [Google Scholar]
  12. Denamur E., Bonacorsi S., Giraud A., Duriez P., Hilali F., Amorin C., Bingen E., Andremont A., Picard B. other authors 2002; High frequency of mutator strains among human uropathogenic Escherichia coli isolates. J Bacteriol 184:605–609
    [Google Scholar]
  13. Fischer I., Grobost F., Dutilh B., Couture J. F., Jullin J., Fourmaux S., Ducastaing A., Lagrange I., Noury P. other authors 2004; Antibiotic resistance among isolates of Enterobacteriaceae and Acinotobacter baumannii in health care centers served by private laboratories: a 6-month study in the Aquitaine area. In 6th European Congress on Chemotherapy and Infection & 24th Interdisciplinary Anti-Infectious Chemotherapy Meeting Paris1–3 December 2004 Abstract no. 413/81P
    [Google Scholar]
  14. Fouts D. E., Tyler H. L., DeBoy R. T., Daugherty S., Ren Q., Badger J. H., Durkin A. S., Huot H., Shrivastava S. other authors 2008; Complete genome sequence of the N2-fixing broad host range endophyte Klebsiella pneumoniae 342 and virulence predictions verified in mice. PLoS Genet 4:e1000141
    [Google Scholar]
  15. Galán J. C., Tato M., Baquero M. R., Turrientes C., Baquero F., Martinez J. L. 2004; Fosfomycin and rifampin disc diffusion tests for detection of Escherichia coli mutator strains. J Clin Microbiol 42:4310–4312
    [Google Scholar]
  16. Guarné A., Ramon-Maiques S., Wolff E. M., Ghirlando R., Hu X., Miller J. H., Yang W. 2004; Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 23:4134–4145
    [Google Scholar]
  17. Haeggman S., Lofdahl S., Paauw A., Verhoef J., Brisse S. 2004; Diversity and evolution of the class A chromosomal β -lactamase gene in Klebsiella pneumoniae . Antimicrob Agents Chemother 48:2400–2408
    [Google Scholar]
  18. Hammond D. S., Harris T., Bell J., Turnidge J., Giffard P. M. 2008; Selection of SHV extended-spectrum- β -lactamase-dependent cefotaxime and ceftazidime resistance in Klebsiella pneumoniae requires a plasmid-borne bla SHV gene. Antimicrob Agents Chemother 52:441–445
    [Google Scholar]
  19. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P. 1998; A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86
    [Google Scholar]
  20. Junop M. S., Yang W., Funchain P., Clendenin W., Miller J. H. 2003; In vitro and in vivo studies of MutS, MutL and MutH mutants: correlation of mismatch repair and DNA recombination. DNA Repair (Amst 2:387–405
    [Google Scholar]
  21. Lai Y. C., Peng H. L., Chang H. Y. 2003; RmpA2, an activator of capsule biosynthesis in Klebsiella pneumoniae CG43, regulates K2 cps gene expression at the transcriptional level. J Bacteriol 185:788–800
    [Google Scholar]
  22. LeClerc J. E., Li B., Payne W. L., Cebula T. A. 1996; High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274:1208–1211
    [Google Scholar]
  23. Lupski J. R., Roth J. R., Weinstock G. M. 1996; Chromosomal duplications in bacteria, fruit flies, and humans. Am J Hum Genet 58:21–27
    [Google Scholar]
  24. Mathew A., Harris A. M., Marshall M. J., Ross G. W. 1975; The use of analytical isoelectric focusing for detection and identification of β -lactamases. J Gen Microbiol 88:169–178
    [Google Scholar]
  25. Matic I., Radman M., Taddei F., Picard B., Doit C., Bingen E., Denamur E., Elion J. 1997; Highly variable mutation rates in commensal and pathogenic Escherichia coli . Science 277:1833–1834
    [Google Scholar]
  26. Members of the SFM Antibiogram Committee 2003; Comité de l'Antibiogramme de la Société Francaise de Microbiologie Report 2003. Int J Antimicrob Agents 21:364–391
    [Google Scholar]
  27. Oliver A., Canton R., Campo P., Baquero F., Blazquez J. 2000; High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288:1251–1254
    [Google Scholar]
  28. Oliver A., Baquero F., Blazquez J. 2002; The mismatch repair system ( mutS , mutL and uvrD genes) in Pseudomonas aeruginosa : molecular characterization of naturally occurring mutants. Mol Microbiol 43:1641–1650
    [Google Scholar]
  29. Podschun R., Ullmann U. 1998; Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 11:589–603
    [Google Scholar]
  30. Prunier A. L., Malbruny B., Laurans M., Brouard J., Duhamel J. F., Leclercq R. 2003; High rate of macrolide resistance in Staphylococcus aureus strains from patients with cystic fibrosis reveals high proportions of hypermutable strains. J Infect Dis 187:1709–1716
    [Google Scholar]
  31. Rice L. B., Carias L. L., Hujer A. M., Bonafede M., Hutton R., Hoyen C., Bonomo R. A. 2000; High-level expression of chromosomally encoded SHV-1 β -lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin-tazobactam in a clinical isolate of Klebsiella pneumoniae . Antimicrob Agents Chemother 44:362–367
    [Google Scholar]
  32. Romero D., Palacios R. 1997; Gene amplification and genomic plasticity in prokaryotes. Annu Rev Genet 31:91–111
    [Google Scholar]
  33. Sandegren L., Andersson D. I. 2009; Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7:578–588
    [Google Scholar]
  34. Schofield M. J., Hsieh P. 2003; DNA mismatch repair: molecular mechanisms and biological function. Annu Rev Microbiol 57:579–608
    [Google Scholar]
  35. Taddei F., Radman M., Maynard-Smith J., Toupance B., Gouyon P. H., Godelle B. 1997; Role of mutator alleles in adaptive evolution. Nature 387:700–702
    [Google Scholar]
  36. Watson M. E. Jr, Burns J. L., Smith A. L. 2004; Hypermutable Haemophilus influenzae with mutations in mutS are found in cystic fibrosis sputum. Microbiology 150:2947–2958
    [Google Scholar]
  37. Worth L. Jr, Clark S., Radman M., Modrich P. 1994; Mismatch repair proteins MutS and MutL inhibit RecA-catalyzed strand transfer between diverged DNAs. Proc Natl Acad Sci U S A 91:3238–3241
    [Google Scholar]
  38. Wu M. F., Yang C. Y., Lin T. L., Wang J. T., Yang F. L., Wu S. H., Hu B. S., Chou T. Y., Tsai M. D. other authors 2009; Humoral immunity against capsule polysaccharide protects the host from magA + Klebsiella pneumoniae -induced lethal disease by evading Toll-like receptor 4 signaling. Infect Immun 77:615–621
    [Google Scholar]
  39. Yu V. L., Hansen D. S., Ko W. C., Sagnimeni A., Klugman K. P., von Gottberg A., Goossens H., Wagener M. M., Benedi V. J. 2007; Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerg Infect Dis 13:986–993
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043885-0
Loading
/content/journal/micro/10.1099/mic.0.043885-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed