1887

Abstract

Despite an abundance of data describing expression of genes in the ALS (agglutinin-like sequence) gene family, little is known about the production of Als proteins on individual cells, their spatial localization or stability. Als proteins are most commonly discussed with respect to function in adhesion of to host and abiotic surfaces. Development of a mAb specific for Als1, one of the eight large glycoproteins encoded by the ALS family, provided the opportunity to detect Als1 during growth of yeast and hyphae, both and , and to demonstrate the utility of the mAb in blocking adhesion to host cells. Although most yeast cells in a saturated culture are Als1-negative by indirect immunofluorescence, Als1 is detected on the surface of nearly all cells shortly after transfer into fresh growth medium. Als1 covers the yeast cell surface, with the exception of bud scars. Daughters of the inoculum cells, and sometimes granddaughters, also have detectable Als1, but Als1 is not detectable on cells from subsequent generations. On germ tubes and hyphae, most Als1 is localized proximal to the mother yeast. Once deposited on yeasts or hyphae, Als1 persists long after the culture has reached saturation. Growth stage-dependent production of Als1, coupled with its persistence on the cell surface, results in a heterogeneous population of cells within a culture. Anti-Als1 immunolabelling patterns vary depending on the source of the cells, with obvious differences between cells recovered from culture and those from a murine model of disseminated candidiasis. Results from this work highlight the temporal parallels for expression and Als1 production in yeasts and germ tubes, the specialized spatial localization and persistence of Als1 on the cell surface, and the differences in Als1 localization that occur and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043851-0
2010-12-01
2020-06-03
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3645.html?itemId=/content/journal/micro/10.1099/mic.0.043851-0&mimeType=html&fmt=ahah

References

  1. Banerjee M., Thompson D. S., Lazzell A., Carlisle P. L., Pierce C., Monteagudo C., López-Ribot J. L., Kadosh D.. 2008; UME6 , a novel filament-specific regulator of Candida albicans hyphal extension and virulence. Mol Biol Cell19:1354–1365
    [Google Scholar]
  2. Bastidas R. J., Heitman J., Cardenas M. E.. 2009; The protein kinase Tor1 regulates adhesin gene expression in Candida albicans . PLoS Pathog5:e1000294
    [Google Scholar]
  3. Beucher B., Marot-Leblond A., Billaud-Nail S., Oh S.-H., Hoyer L. L., Robert R.. 2009; Recognition of Candida albicans Als3 by the germ tube-specific monoclonal antibody 3D9.3. FEMS Immunol Med Microbiol55:314–323
    [Google Scholar]
  4. Bi E.. 2001; Cytokinesis in budding yeast: the relationship between actomyosin ring function and septum formation. Cell Struct Funct26:529–537
    [Google Scholar]
  5. Braun B. R., Johnson A. D.. 2000; TUP1 , CPH1 and EFG1 make independent contributions to filamentation in Candida albicans . Genetics155:57–67
    [Google Scholar]
  6. Carlisle P. L., Banerjee M., Lazzell A., Monteagudo C., López-Ribot J. L., Kadosh D.. 2009; Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence. Proc Natl Acad Sci U S A106:599–604
    [Google Scholar]
  7. Chaffin W. L.. 1984; Site selection for bud and germ tube emergence in Candida albicans . J Gen Microbiol130:431–440
    [Google Scholar]
  8. Chant J., Pringle J. R.. 1995; Patterns of bud-site selection in the yeast Saccharomyces cerevisiae . J Cell Biol129:751–765
    [Google Scholar]
  9. Cheng G., Wozniak K., Wallig M. A., Fidel P. L. Jr, Trupin S. R., Hoyer L. L.. 2005; Comparison between Candida albicans agglutinin-like sequence gene expression patterns in human clinical specimens and models of vaginal candidiasis. Infect Immun73:1656–1663
    [Google Scholar]
  10. Coleman D. A., Oh S.-H., Zhao X., Zhao H., Hutchins J. T., Vernachio J. H., Patti J. M., Hoyer L. L.. 2009; Monoclonal antibodies specific for Candida albicans Als3 that immunolabel fungal cells in vitro and in vivo and block adhesion to host surfaces. J Microbiol Methods78:71–78
    [Google Scholar]
  11. DeMarini D. J., Adams A. E. M., Fares H., De Virgilio C., Valle G., Chuang J. S., Pringle J. R.. 1997; A septin-based hierarchy of proteins required for localized deposition of chitin in the Saccharomyces cerevisiae cell wall. J Cell Biol139:75–93
    [Google Scholar]
  12. Fonzi W. A., Irwin M. Y.. 1993; Isogenic strain construction and gene mapping in Candida albicans . Genetics134:717–728
    [Google Scholar]
  13. Fu Y., Ibrahim A. S., Sheppard D. C., Chen Y.-C., French S. W., Cutler J. E., Filler S. G., Edwards J. E. Jr. 2002; Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol44:61–72
    [Google Scholar]
  14. Gillum A. M., Tsay E. Y., Kirsch D. R.. 1984; Isolation of the Candida albicans genes for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet198:179–182
    [Google Scholar]
  15. Goyard S., Knechtle P., Chauvel M., Mallet A., Prévost M.-C., Proux C., Coppée J.-Y., Schwartz P., Dromer F.. other authors 2008; The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans . Mol Biol Cell19:2251–2266
    [Google Scholar]
  16. Green C. B., Cheng G., Chandra J., Mukherjee P., Ghannoum M. A., Hoyer L. L.. 2004; RT-PCR detection of Candida albicans ALS gene expression in the reconstituted human epithelium (RHE) model of oral candidiasis and in model biofilms. Microbiology150:267–275
    [Google Scholar]
  17. Green C. B., Zhao X., Hoyer L. L.. 2005a; Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis. Infect Immun73:1852–1855
    [Google Scholar]
  18. Green C. B., Zhao X., Yeater K. M., Hoyer L. L.. 2005b; Construction and real-time RT-PCR validation of Candida albicans P ALS -GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology151:1051–1060
    [Google Scholar]
  19. Green C. B., Manfra Marretta S., Cheng G., Faddoul F. F., Ehrhart E. J., Hoyer L. L.. 2006; RT-PCR analysis of Candida albicans ALS gene expression in a hyposalivatory rat model of oral candidiasis and in HIV-positive human patients. Med Mycol44:103–111
    [Google Scholar]
  20. Herrero A. B., López M. C., Fernández-Lago L., Domínguez A.. 1999; Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology145:2727–2737
    [Google Scholar]
  21. Hoyer L. L.. 2001; The ALS gene family of Candida albicans . Trends Microbiol9:176–180
    [Google Scholar]
  22. Hoyer L. L., Scherer S., Shatzman A. R., Livi G. P.. 1995; Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol15:39–54
    [Google Scholar]
  23. Hoyer L. L., Green C. B., Oh S.-H., Zhao X.. 2008; Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol46:1–15
    [Google Scholar]
  24. Jones T., Federspiel N. A., Chibana H., Dungan J., Kalman S., Magee B. B., Newport G., Thorstenson Y. R., Agabian N.. other authors 2004; The diploid genome sequence of Candida albicans . Proc Natl Acad Sci U S A101:7329–7334
    [Google Scholar]
  25. Lee K. L., Buckley H. R., Campbell C. C.. 1975; An amino acid liquid synthetic medium for the development of mycelial and yeast forms of Candida albicans . Sabouraudia13:148–153
    [Google Scholar]
  26. Lenardon M. D., Whitton R. K., Munro C. A., Marshall D., Gow N. A. R.. 2007; Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in the Candida albicans cell wall. Mol Microbiol66:1164–1173
    [Google Scholar]
  27. Martínez A. I., Castillo L., Garcerá A., Elorza M. V., Valentín E., Sentandreu R.. 2004; Role of Pir1 in the construction of the Candida albicans cell wall. Microbiology150:3151–3161
    [Google Scholar]
  28. Mitchell L. H., Soll D. R.. 1979; Commitment to germ tube or bud formation during release from stationary phase in Candida albicans . Exp Cell Res120:167–179
    [Google Scholar]
  29. Murad A. M. A., Lee P. R., Broadbent I. D., Barelle C. J., Brown A. J. P.. 2000; CIp10, an efficient and convenient integrating vector for Candida albicans . Yeast16:325–327
    [Google Scholar]
  30. Nobile C. J., Mitchell A. P.. 2005; Regulation of cell-surface genes and biofilm formation by the Candida albicans transcription factor Bcr1p. Curr Biol15:1150–1155
    [Google Scholar]
  31. Porta A., Ramon A. M., Fonzi W. A.. 1999; PRR1 , a homolog of Aspergillus nidulans palF , controls pH-dependent gene expression and filamentation in Candida albicans . J Bacteriol181:7516–7523
    [Google Scholar]
  32. Rico H., Herrero E., Miragall F., Sentandreu R.. 1991; An electron microscopy study of wall expansion during Candida albicans yeast and mycelial growth using concanavalin A-ferritin labelling of mannoproteins. Arch Microbiol156:111–114
    [Google Scholar]
  33. Shannon J. L., Rothman A. H.. 1971; Transverse septum formation in budding cells of the yeastlike fungus Candida albicans . J Bacteriol106:1026–1028
    [Google Scholar]
  34. Sudbery P., Gow N., Berman J.. 2004; The distinct morphogenic states of Candida albicans . Trends Microbiol12:317–324
    [Google Scholar]
  35. Sumita T., Yoko-o T., Shimma Y., Jigami Y.. 2005; Comparison of cell wall localization among Pir family proteins and functional dissection of the region required for cell wall binding and bud scar recruitment of Pir1p. Eukaryot Cell4:1872–1881
    [Google Scholar]
  36. Walther A., Wendland J.. 2003; Septation and cytokinesis in fungi. Fungal Genet Biol40:187–196
    [Google Scholar]
  37. Warenda A. J., Konopka J. B.. 2002; Septin function in Candida albicans morphogenesis. Mol Biol Cell13:2732–2746
    [Google Scholar]
  38. White S. J., Rosenbach A., Lephart P., Nguyen D., Benjamin A., Tzipori S., Whiteway M., Mescas J., Kumamoto C.. 2007; Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog3:e184
    [Google Scholar]
  39. Zeidler U., Lettner T., Lassnig C., Müller M., Lajko R., Hintner H., Breitenbach M., Bito A.. 2009; UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans . FEMS Yeast Res9:126–142
    [Google Scholar]
  40. Zhao X., Oh S.-H., Cheng G., Green C. B., Nuessen J. A., Yeater K., Leng R. P., Brown A. J. P., Hoyer L. L.. 2004; ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology150:2415–2428
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043851-0
Loading
/content/journal/micro/10.1099/mic.0.043851-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error