1887

Abstract

The operon encodes two small heat-shock proteins, the inclusion-body-binding proteins IbpA and IbpB. Here, we report that expression of is a complex process involving at least four different layers of control, namely transcriptional control, RNA processing, translation control and protein stability. As a typical member of the heat-shock regulon, transcription of the operon is controlled by the alternative sigma factor (RpoH). Heat-induced transcription of the bicistronic operon is followed by RNase E-mediated processing events, resulting in monocistronic and transcripts and short 3′-terminal fragments. Translation of is controlled by an RNA thermometer in its 5′ untranslated region, forming a secondary structure that blocks entry of the ribosome at low temperatures. A similar structure upstream of is functional but not , suggesting downregulation of expression in the presence of IbpA. The recently reported degradation of IbpA and IbpB by the Lon protease and differential regulation of IbpA and IbpB levels in are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043802-0
2011-01-01
2020-09-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/66.html?itemId=/content/journal/micro/10.1099/mic.0.043802-0&mimeType=html&fmt=ahah

References

  1. Allen S. P., Polazzi J. O., Gierse J. K., Easton A. M.. 1992; Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli . J Bacteriol174:6938–6947
    [Google Scholar]
  2. Bissonnette S. A., Rivera-Rivera I., Sauer R. T., Baker T. A.. 2010; The IbpA and IbpB small heat-shock proteins are substrates of the AAA+ Lon protease. Mol Microbiol75:1539–1549
    [Google Scholar]
  3. Brantl S., Wagner E. G.. 1994; Antisense RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. EMBO J13:3599–3607
    [Google Scholar]
  4. Butland G., Peregrin-Alvarez J. M., Li J., Yang W., Yang X., Canadien V., Starostine A., Richards D.. other authors 2005; Interaction network containing conserved and essential protein complexes in Escherichia coli . Nature433:531–537
    [Google Scholar]
  5. Campbell E. A., Westblade L. F., Darst S. A.. 2008; Regulation of bacterial RNA polymerase σ factor activity: a structural perspective. Curr Opin Microbiol11:121–127
    [Google Scholar]
  6. Carpousis A. J.. 2007; The RNA degradosome of Escherichia coli : an mRNA-degrading machine assembled on RNase E. Annu Rev Microbiol61:71–87
    [Google Scholar]
  7. Chuang S. E., Burland V., Plunkett G. III, Daniels D. L., Blattner F. R.. 1993; Sequence analysis of four new heat-shock genes constituting the hslTS / ibpAB and hslVU operons in Escherichia coli . Gene134:1–6
    [Google Scholar]
  8. Ehretsmann C. P., Carpousis A. J., Krisch H. M.. 1992; Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Dev6:149–159
    [Google Scholar]
  9. Goldblum K., Apririon D.. 1981; Inactivation of the ribonucleic acid-processing enzyme ribonuclease E blocks cell division. J Bacteriol146:128–132
    [Google Scholar]
  10. Gross C. A., Chan C., Dombroski A., Gruber T., Sharp M., Tupy J., Young B.. 1998; The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb Symp Quant Biol63:141–155
    [Google Scholar]
  11. Guisbert E., Yura T., Rhodius V. A., Gross C. A.. 2008; Convergence of molecular, modeling, and systems approaches for an understanding of the Escherichia coli heat shock response. Microbiol Mol Biol Rev72:545–554
    [Google Scholar]
  12. Han M. J., Park S. J., Park T. J., Lee S. Y.. 2004; Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli . Biotechnol Bioeng88:426–436
    [Google Scholar]
  13. Hartz D., McPheeters D. S., Traut R., Gold L.. 1988; Extension inhibition analysis of translation initiation complexes. Methods Enzymol164:419–425
    [Google Scholar]
  14. Hengge-Aronis R.. 2002; Signal transduction and regulatory mechanisms involved in control of the σ S (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev66:373–395
    [Google Scholar]
  15. Jain C.. 2002; Degradation of mRNA in Escherichia coli . IUBMB Life54:315–321
    [Google Scholar]
  16. Kitagawa M., Matsumura Y., Tsuchido T.. 2000; Small heat shock proteins, IbpA and IbpB, are involved in resistances to heat and superoxide stresses in Escherichia coli . FEMS Microbiol Lett184:165–171
    [Google Scholar]
  17. Kitagawa M., Miyakawa M., Matsumura Y., Tsuchido T.. 2002; Escherichia coli small heat shock proteins, IbpA and IbpB, protect enzymes from inactivation by heat and oxidants. Eur J Biochem269:2907–2917
    [Google Scholar]
  18. Klinkert B., Narberhaus F.. 2009; Microbial thermosensors. Cell Mol Life Sci66:2661–2676
    [Google Scholar]
  19. Kuczyńska-Wisńik D., Laskowska E., Taylor A.. 2001; Transcription of the ibpB heat-shock gene is under control of σ 32- and σ 54-promoters, a third regulon of heat-shock response. Biochem Biophys Res Commun284:57–64
    [Google Scholar]
  20. Laskowska E., Wawrzynow A., Taylor A.. 1996; IbpA and IbpB, the new heat-shock proteins, bind to endogenous Escherichia coli proteins aggregated intracellularly by heat shock. Biochimie78:117–122
    [Google Scholar]
  21. Lethanh H., Neubauer P., Hoffmann F.. 2005; The small heat-shock proteins IbpA and IbpB reduce the stress load of recombinant Escherichia coli and delay degradation of inclusion bodies. Microb Cell Fact4:6
    [Google Scholar]
  22. Loayza D., Carpousis A. J., Krisch H. M.. 1991; Gene 32 transcription and mRNA processing in T4-related bacteriophages. Mol Microbiol5:715–725
    [Google Scholar]
  23. Matuszewska M., Kuczyńska-Wisńik D., Laskowska E., Liberek K.. 2005; The small heat shock protein IbpA of Escherichia coli cooperates with IbpB in stabilization of thermally aggregated proteins in a disaggregation competent state. J Biol Chem280:12292–12298
    [Google Scholar]
  24. Matuszewska E., Kwiatkowska J., , Kuczyńska-Wisńik D., Laskowska E.. 2008; Escherichia coli heat-shock proteins IbpA/B are involved in resistance to oxidative stress induced by copper. Microbiology154:1739–1747
    [Google Scholar]
  25. Miller J. H.. 1972; Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Narberhaus F.. 2010; Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol7:84–89
    [Google Scholar]
  27. Narberhaus F., Vogel J.. 2009; Regulatory RNAs in prokaryotes: here, there and everywhere. Mol Microbiol74:261–269
    [Google Scholar]
  28. Narberhaus F., Waldminghaus T., Chowdhury S.. 2006; RNA thermometers. FEMS Microbiol Rev30:3–16
    [Google Scholar]
  29. Newbury S. F., Smith N. H., Higgins C. F.. 1987; Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell51:1131–1143
    [Google Scholar]
  30. Nonaka G., Blankschien M., Herman C., Gross C. A., Rhodius V. A.. 2006; Regulon and promoter analysis of the E. coli heat-shock factor, σ 32, reveals a multifaceted cellular response to heat stress. Genes Dev20:1776–1789
    [Google Scholar]
  31. Norrander J., Kempe T., Messing J.. 1983; Construction of improved M13-vectors using oligodeoxynucleotide-directed mutagenesis. Gene26:101–106
    [Google Scholar]
  32. Nover L., Scharf K. D., Neumann D.. 1989; Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol Cell Biol9:1298–1308
    [Google Scholar]
  33. Pridmore R. D.. 1987; New and versatile cloning vectors with kanamycin-resistance marker. Gene56:309–312
    [Google Scholar]
  34. Rasouly A., Schonbrun M., Shenhar Y., Ron E. Z.. 2009; YbeY, a heat shock protein involved in translation in Escherichia coli . J Bacteriol191:2649–2655
    [Google Scholar]
  35. Ratajczak E., Zietkiewicz S., Liberek K.. 2009; Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J Mol Biol386:178–189
    [Google Scholar]
  36. Rauhut R., Klug G.. 1999; mRNA degradation in bacteria. FEMS Microbiol Rev23:353–370
    [Google Scholar]
  37. Richmond C. S., Glasner J. D., Mau R., Jin H., Blattner F. R.. 1999; Genome-wide expression profiling in Escherichia coli K-12. Nucleic Acids Res27:3821–3835
    [Google Scholar]
  38. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Schumann W.. 2009; Temperature sensors of eubacteria. Adv Appl Microbiol67:213–256
    [Google Scholar]
  40. Shearstone J. R., Baneyx F.. 1999; Biochemical characterization of the small heat shock protein IbpB from Escherichia coli . J Biol Chem274:9937–9945
    [Google Scholar]
  41. Singh K., Groth-Vasselli B., Farnsworth P. N.. 1998; Interaction of DNA with bovine lens alpha-crystallin: its functional implications. Int J Biol Macromol22:315–320
    [Google Scholar]
  42. Studier F. W.. 1975; Genetic mapping of a mutation that causes ribonucleases III deficiency in Escherichia coli . J Bacteriol124:307–316
    [Google Scholar]
  43. Vaillancourt P. E.. 2003; E. coli Gene Expression Protocols Totowa, NJ: Humana Press;
    [Google Scholar]
  44. Veinger L., Diamant S., Buchner J., Goloubinoff P.. 1998; The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J Biol Chem273:11032–11037
    [Google Scholar]
  45. Wade J. T., Roa D. C., Grainger D. C., Hurd D., Busby S. J., Struhl K., Nudler E.. 2006; Extensive functional overlap between sigma factors in Escherichia coli . Nat Struct Mol Biol13:806–814
    [Google Scholar]
  46. Waldminghaus T., Fippinger A., Alfsmann J., Narberhaus F.. 2005; RNA thermometers are common in α - and γ -proteobacteria. Biol Chem386:1279–1286
    [Google Scholar]
  47. Waldminghaus T., Gaubig L. C., Narberhaus F.. 2007; Genome-wide bioinformatic prediction and experimental evaluation of potential RNA thermometers. Mol Genet Genomics278:555–564
    [Google Scholar]
  48. Waldminghaus T., Gaubig L. C., Klinkert B., Narberhaus F.. 2009; The Escherichia coli ibpA thermometer is comprised of stable and unstable structural elements. RNA Biol6:455–463
    [Google Scholar]
  49. Waters L. S., Storz G.. 2009; Regulatory RNAs in bacteria. Cell136:615–628
    [Google Scholar]
  50. Willkomm D. K., Minnerup J., Huttenhofer A., Hartmann R. K.. 2005; Experimental RNomics in Aquifex aeolicus : identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res33:1949–1960
    [Google Scholar]
  51. Winkler W. C., Breaker R. R.. 2005; Regulation of bacterial gene expression by riboswitches. Annu Rev Microbiol59:487–517
    [Google Scholar]
  52. Zuker M.. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res31:3406–3415
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043802-0
Loading
/content/journal/micro/10.1099/mic.0.043802-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error