1887

Abstract

Larvae of are widely used to evaluate microbial virulence and to assess the efficacy of antimicrobial agents. The aim of this work was to examine the ability of an toxin, fumagillin, to suppress the immune response of larvae. Administration of fumagillin to larvae increased their susceptibility to subsequent infection with conidia ( = 0.0052). It was demonstrated that a dose of 2 µg fumagillin ml reduced the ability of insect immune cells (haemocytes) to kill opsonized cells of ( = 0.039) and to phagocytose conidia ( = 0.016). Fumagillin reduced the oxygen uptake of haemocytes and decreased the translocation of a p47 protein which is homologous to p47, a protein essential for the formation of a functional NADPH oxidase complex required for superoxide production. In addition, toxin-treated haemocytes showed reduced levels of degranulation as measured by the release of a protein showing reactivity to an anti-myeloperoxidase antibody (<0.049) that was subsequently identified by liquid chromatography-MS analysis as prophenoloxidase. This work demonstrates that fumagillin suppresses the immune response of larvae by inhibiting the action of haemocytes and thus renders the larvae susceptible to infection. During growth of the fungus in the larvae, this toxin, along with others, may facilitate growth by suppressing the cellular immune response.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043786-0
2011-05-01
2020-01-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1481.html?itemId=/content/journal/micro/10.1099/mic.0.043786-0&mimeType=html&fmt=ahah

References

  1. Amitani R., Murayama T., Nawada R., Lee W. J., Niimi A., Suzuki K., Tanaka E., Kuze F.. ( 1995;). Aspergillus culture filtrates and sputum sols from patients with pulmonary aspergillosis cause damage to human respiratory ciliated epithelium in vitro. Eur Respir J8:1681–1687 [CrossRef][PubMed]
    [Google Scholar]
  2. Bergin D., Reeves E. P., Renwick J., Wientjes F. B., Kavanagh K.. ( 2005;). Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun73:4161–4170 [CrossRef][PubMed]
    [Google Scholar]
  3. Boulanger N., Ehret-Sabatier L., Brun R., Zachary D., Bulet P., Imler J. L.. ( 2001;). Immune response of Drosophila melanogaster to infection with the flagellate parasite Crithidia spp. Insect Biochem Mol Biol31:129–137 [CrossRef][PubMed]
    [Google Scholar]
  4. Brakhage A. A., Langfelder K.. ( 2002;). Menacing mold: the molecular biology of Aspergillus fumigatus . Annu Rev Microbiol56:433–455 [CrossRef][PubMed]
    [Google Scholar]
  5. Brennan M., Thomas D. Y., Whiteway M., Kavanagh K.. ( 2002;). Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol34:153–157 [CrossRef][PubMed]
    [Google Scholar]
  6. Cotter G., Doyle S., Kavanagh K.. ( 2000;). Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol27:163–169 [CrossRef][PubMed]
    [Google Scholar]
  7. Fallon J. P., Reeves E. P., Kavanagh K.. ( 2010;). Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J Med Microbiol59:625–633 [CrossRef][PubMed]
    [Google Scholar]
  8. Fraser R. S.. ( 1993;). Pulmonary aspergillosis: pathologic and pathogenetic features. Pathol Annu28:231–277[PubMed]
    [Google Scholar]
  9. Fuchs B. B., Mylonakis E.. ( 2006;). Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol9:346–351 [CrossRef][PubMed]
    [Google Scholar]
  10. Hamamoto H., Tonoike A., Narushima K., Horie R., Sekimizu K.. ( 2009;). Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol149:334–339[PubMed][CrossRef]
    [Google Scholar]
  11. Hou L., Mori D., Takase Y., Meihua P., Kai K., Tokunaga O.. ( 2009;). Fumagillin inhibits colorectal cancer growth and metastasis in mice: in vivo and in vitro study of anti-angiogenesis. Pathol Int59:448–461 [CrossRef][PubMed]
    [Google Scholar]
  12. Ingber D., Fujita T., Kishimoto S., Sudo K., Kanamaru T., Brem H., Folkman J.. ( 1990;). Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature348:555–557 [CrossRef][PubMed]
    [Google Scholar]
  13. Jackson J. C., Higgins L. A., Lin X.. ( 2009;). Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella . PLoS ONE4:e4224 [CrossRef][PubMed]
    [Google Scholar]
  14. Jander G., Rahme L. G., Ausubel F. M.. ( 2000;). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol182:3843–3845 [CrossRef][PubMed]
    [Google Scholar]
  15. Johny S., Lange C. E., Solter L. F., Merisko A., Whitman D. W.. ( 2007;). New insect system for testing antibiotics. J Parasitol93:1505–1511 [CrossRef][PubMed]
    [Google Scholar]
  16. Kavanagh K., Reeves E. P.. ( 2004;). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev28:101–112 [CrossRef][PubMed]
    [Google Scholar]
  17. Klebanoff S. J.. ( 1999;). Myeloperoxidase. Proc Assoc Am Physicians111:383–389[PubMed]
    [Google Scholar]
  18. Lewis R. E., Wiederhold N. P., Chi J., Han X. Y., Komanduri K. V., Kontoyiannis D. P., Prince R. A.. ( 2005;). Detection of gliotoxin in experimental and human aspergillosis. Infect Immun73:635–637 [CrossRef][PubMed]
    [Google Scholar]
  19. Lionakis M. S., Kontoyiannis D. P.. ( 2005;). Fruit flies as a minihost model for studying drug activity and virulence in Aspergillus. . Med Mycol43:Suppl. 1S111–S114[CrossRef]
    [Google Scholar]
  20. Lionakis M. S., Lewis R. E., May G. S., Wiederhold N. P., Albert N. D., Halder G., Kontoyiannis D. P.. ( 2005;). Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis191:1188–1195[CrossRef]
    [Google Scholar]
  21. Mandato C. A., Diehl-Jones W. L., Moore S. J., Downer R. G.. ( 1997;). The effects of eiconasoid biosythesis inhibitors on prophenoloxidase activation, phagocytosis and cell spreading in Galleria mellonella . J Insect Physiol43:1–8 [CrossRef][PubMed]
    [Google Scholar]
  22. Mansfield B. E., Dionne M. S., Schneider D. S., Freitag N. E.. ( 2003;). Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster . Cell Microbiol5:901–911 [CrossRef][PubMed]
    [Google Scholar]
  23. McCowen M. C., Callender M. E., Lawlis J. F. Jr. ( 1951;). Fumagillin (H-3), a new antibiotic with amebicidal properties. Science113:202–203 [CrossRef][PubMed]
    [Google Scholar]
  24. Mitchell C. G., Slight J., Donaldson K.. ( 1997;). Diffusible component from the spore surface of the fungus Aspergillus fumigatus which inhibits the macrophage oxidative burst is distinct from gliotoxin and other hyphal toxins. Thorax52:796–801 [CrossRef][PubMed]
    [Google Scholar]
  25. Morton D. B., Dunphy G. B., Chadwick J. S.. ( 1987;). Reactions of hemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis . Dev Comp Immunol11:47–55 [CrossRef][PubMed]
    [Google Scholar]
  26. Mylonakis E.. ( 2008;). Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia165:1–3 [CrossRef][PubMed]
    [Google Scholar]
  27. Mylonakis E., Moreno R., El Khoury J. B., Idnurm A., Heitman J., Calderwood S. B., Ausubel F. M., Diener A.. ( 2005;). Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun73:3842–3850 [CrossRef][PubMed]
    [Google Scholar]
  28. Peleg A. Y., Jara S., Monga D., Eliopoulos G. M., Moellering R. C. Jr, Mylonakis E.. ( 2009;). Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother53:2605–2609 [CrossRef][PubMed]
    [Google Scholar]
  29. Reeves E. P., Messina C. G. M., Doyle S., Kavanagh K.. ( 2004;). Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella . Mycopathologia158:73–79 [CrossRef][PubMed]
    [Google Scholar]
  30. Rementeria A., López-Molina N., Ludwig A., Vivanco A. B., Bikandi J., Pontón J., Garaizar J.. ( 2005;). Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol22:1–23 [CrossRef][PubMed]
    [Google Scholar]
  31. Renwick J., Daly P., Reeves E. P., Kavanagh K.. ( 2006;). Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia161:377–384 [CrossRef][PubMed]
    [Google Scholar]
  32. Renwick J., Reeves E. P., Wientjes F. B., Kavanagh K.. ( 2007;). Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated hemocytes of Galleria mellonella . Dev Comp Immunol31:347–359. [CrossRef][PubMed]
    [Google Scholar]
  33. Richard J. L., DeBey M. C.. ( 1995;). Production of gliotoxin during the pathogenic state in turkey poults by Aspergillus fumigatus Fresenius. Mycopathologia129:111–115 [CrossRef][PubMed]
    [Google Scholar]
  34. Richard J. L., Dvorak T. J., Ross P. F.. ( 1996;). Natural occurrence of gliotoxin in turkeys infected with Aspergillus fumigatus, Fresenius. Mycopathologia134:167–170 [CrossRef][PubMed]
    [Google Scholar]
  35. Rowan R., Moran C., McCann M., Kavanagh K.. ( 2009;). Use of Galleria mellonella larvae to evaluate the in vivo anti-fungal activity of [Ag2(mal)(phen)3]. Biometals22:461–467 [CrossRef][PubMed]
    [Google Scholar]
  36. Salzet M.. ( 2001;). Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol22:285–288 [CrossRef][PubMed]
    [Google Scholar]
  37. Segal A. W., Coade S. B.. ( 1978;). Kinetics of oxygen consumption by phagocytosing human neutrophils. Biochem Biophys Res Commun84:611–617 [CrossRef][PubMed]
    [Google Scholar]
  38. Shevchenko A., Tomas H., Havlis J., Olsen J. V., Mann M.. ( 2006;). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc1:2856–2860 [CrossRef][PubMed]
    [Google Scholar]
  39. Singh N., Husain S.. AST Infectious Diseases Community of Practice ( 2009;). Invasive aspergillosis in solid organ transplant recipients. Am J Transplant9:Suppl. 4S180–S191 [CrossRef][PubMed]
    [Google Scholar]
  40. Spitznagel J. K.. ( 1990;). Antibiotic proteins of human neutrophils. J Clin Invest86:1381–1386 [CrossRef][PubMed]
    [Google Scholar]
  41. Standish A. J., Weiser J. N.. ( 2009;). Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol183:2602–2609 [CrossRef][PubMed]
    [Google Scholar]
  42. Sutton P., Waring P., Müllbacher A.. ( 1996;). Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunol Cell Biol74:318–322 [CrossRef][PubMed]
    [Google Scholar]
  43. Tekaia F., Latgé J. P.. ( 2005;). Aspergillus fumigatus: saprophyte or pathogen?. Curr Opin Microbiol8:385–392 [CrossRef][PubMed]
    [Google Scholar]
  44. Tsunawaki S., Yoshida L. S., Nishida S., Kobayashi T., Shimoyama T.. ( 2004;). Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun72:3373–3382 [CrossRef][PubMed]
    [Google Scholar]
  45. Vandewoude K. H., Blot S. I., Benoit D., Colardyn F., Vogelaers D.. ( 2004;). Invasive aspergillosis in critically ill patients: attributable mortality and excesses in length of ICU stay and ventilator dependence. J Hosp Infect56:269–276 [CrossRef][PubMed]
    [Google Scholar]
  46. Vonberg R.-P., Gastmeier P.. ( 2006;). Nosocomial aspergillosis in outbreak settings. J Hosp Infect63:246–254 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043786-0
Loading
/content/journal/micro/10.1099/mic.0.043786-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error