1887

Abstract

Larvae of are widely used to evaluate microbial virulence and to assess the efficacy of antimicrobial agents. The aim of this work was to examine the ability of an toxin, fumagillin, to suppress the immune response of larvae. Administration of fumagillin to larvae increased their susceptibility to subsequent infection with conidia ( = 0.0052). It was demonstrated that a dose of 2 µg fumagillin ml reduced the ability of insect immune cells (haemocytes) to kill opsonized cells of ( = 0.039) and to phagocytose conidia ( = 0.016). Fumagillin reduced the oxygen uptake of haemocytes and decreased the translocation of a p47 protein which is homologous to p47, a protein essential for the formation of a functional NADPH oxidase complex required for superoxide production. In addition, toxin-treated haemocytes showed reduced levels of degranulation as measured by the release of a protein showing reactivity to an anti-myeloperoxidase antibody (<0.049) that was subsequently identified by liquid chromatography-MS analysis as prophenoloxidase. This work demonstrates that fumagillin suppresses the immune response of larvae by inhibiting the action of haemocytes and thus renders the larvae susceptible to infection. During growth of the fungus in the larvae, this toxin, along with others, may facilitate growth by suppressing the cellular immune response.

Funding
This study was supported by the:
  • Environmental Protection Agency
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043786-0
2011-05-01
2021-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/5/1481.html?itemId=/content/journal/micro/10.1099/mic.0.043786-0&mimeType=html&fmt=ahah

References

  1. Amitani R., Murayama T., Nawada R., Lee W. J., Niimi A., Suzuki K., Tanaka E., Kuze F. ( 1995). Aspergillus culture filtrates and sputum sols from patients with pulmonary aspergillosis cause damage to human respiratory ciliated epithelium in vitro. Eur Respir J 8:1681–1687 [View Article][PubMed]
    [Google Scholar]
  2. Bergin D., Reeves E. P., Renwick J., Wientjes F. B., Kavanagh K. ( 2005). Superoxide production in Galleria mellonella hemocytes: identification of proteins homologous to the NADPH oxidase complex of human neutrophils. Infect Immun 73:4161–4170 [View Article][PubMed]
    [Google Scholar]
  3. Boulanger N., Ehret-Sabatier L., Brun R., Zachary D., Bulet P., Imler J. L. ( 2001). Immune response of Drosophila melanogaster to infection with the flagellate parasite Crithidia spp. Insect Biochem Mol Biol 31:129–137 [View Article][PubMed]
    [Google Scholar]
  4. Brakhage A. A., Langfelder K. ( 2002). Menacing mold: the molecular biology of Aspergillus fumigatus . Annu Rev Microbiol 56:433–455 [View Article][PubMed]
    [Google Scholar]
  5. Brennan M., Thomas D. Y., Whiteway M., Kavanagh K. ( 2002). Correlation between virulence of Candida albicans mutants in mice and Galleria mellonella larvae. FEMS Immunol Med Microbiol 34:153–157 [View Article][PubMed]
    [Google Scholar]
  6. Cotter G., Doyle S., Kavanagh K. ( 2000). Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol 27:163–169 [View Article][PubMed]
    [Google Scholar]
  7. Fallon J. P., Reeves E. P., Kavanagh K. ( 2010). Inhibition of neutrophil function following exposure to the Aspergillus fumigatus toxin fumagillin. J Med Microbiol 59:625–633 [View Article][PubMed]
    [Google Scholar]
  8. Fraser R. S. ( 1993). Pulmonary aspergillosis: pathologic and pathogenetic features. Pathol Annu 28:231–277[PubMed]
    [Google Scholar]
  9. Fuchs B. B., Mylonakis E. ( 2006). Using non-mammalian hosts to study fungal virulence and host defense. Curr Opin Microbiol 9:346–351 [View Article][PubMed]
    [Google Scholar]
  10. Hamamoto H., Tonoike A., Narushima K., Horie R., Sekimizu K. ( 2009). Silkworm as a model animal to evaluate drug candidate toxicity and metabolism. Comp Biochem Physiol C Toxicol Pharmacol 149:334–339[PubMed] [CrossRef]
    [Google Scholar]
  11. Hou L., Mori D., Takase Y., Meihua P., Kai K., Tokunaga O. ( 2009). Fumagillin inhibits colorectal cancer growth and metastasis in mice: in vivo and in vitro study of anti-angiogenesis. Pathol Int 59:448–461 [View Article][PubMed]
    [Google Scholar]
  12. Ingber D., Fujita T., Kishimoto S., Sudo K., Kanamaru T., Brem H., Folkman J. ( 1990). Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348:555–557 [View Article][PubMed]
    [Google Scholar]
  13. Jackson J. C., Higgins L. A., Lin X. ( 2009). Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella . PLoS ONE 4:e4224 [View Article][PubMed]
    [Google Scholar]
  14. Jander G., Rahme L. G., Ausubel F. M. ( 2000). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol 182:3843–3845 [View Article][PubMed]
    [Google Scholar]
  15. Johny S., Lange C. E., Solter L. F., Merisko A., Whitman D. W. ( 2007). New insect system for testing antibiotics. J Parasitol 93:1505–1511 [View Article][PubMed]
    [Google Scholar]
  16. Kavanagh K., Reeves E. P. ( 2004). Exploiting the potential of insects for in vivo pathogenicity testing of microbial pathogens. FEMS Microbiol Rev 28:101–112 [View Article][PubMed]
    [Google Scholar]
  17. Klebanoff S. J. ( 1999). Myeloperoxidase. Proc Assoc Am Physicians 111:383–389[PubMed]
    [Google Scholar]
  18. Lewis R. E., Wiederhold N. P., Chi J., Han X. Y., Komanduri K. V., Kontoyiannis D. P., Prince R. A. ( 2005). Detection of gliotoxin in experimental and human aspergillosis. Infect Immun 73:635–637 [View Article][PubMed]
    [Google Scholar]
  19. Lionakis M. S., Kontoyiannis D. P. ( 2005). Fruit flies as a minihost model for studying drug activity and virulence in Aspergillus. . Med Mycol 43:Suppl. 1S111–S114 [CrossRef]
    [Google Scholar]
  20. Lionakis M. S., Lewis R. E., May G. S., Wiederhold N. P., Albert N. D., Halder G., Kontoyiannis D. P. ( 2005). Toll-deficient Drosophila flies as a fast, high-throughput model for the study of antifungal drug efficacy against invasive aspergillosis and Aspergillus virulence. J Infect Dis 191:1188–1195 [CrossRef]
    [Google Scholar]
  21. Mandato C. A., Diehl-Jones W. L., Moore S. J., Downer R. G. ( 1997). The effects of eiconasoid biosythesis inhibitors on prophenoloxidase activation, phagocytosis and cell spreading in Galleria mellonella . J Insect Physiol 43:1–8 [View Article][PubMed]
    [Google Scholar]
  22. Mansfield B. E., Dionne M. S., Schneider D. S., Freitag N. E. ( 2003). Exploration of host-pathogen interactions using Listeria monocytogenes and Drosophila melanogaster . Cell Microbiol 5:901–911 [View Article][PubMed]
    [Google Scholar]
  23. McCowen M. C., Callender M. E., Lawlis J. F. Jr ( 1951). Fumagillin (H-3), a new antibiotic with amebicidal properties. Science 113:202–203 [View Article][PubMed]
    [Google Scholar]
  24. Mitchell C. G., Slight J., Donaldson K. ( 1997). Diffusible component from the spore surface of the fungus Aspergillus fumigatus which inhibits the macrophage oxidative burst is distinct from gliotoxin and other hyphal toxins. Thorax 52:796–801 [View Article][PubMed]
    [Google Scholar]
  25. Morton D. B., Dunphy G. B., Chadwick J. S. ( 1987). Reactions of hemocytes of immune and non-immune Galleria mellonella larvae to Proteus mirabilis . Dev Comp Immunol 11:47–55 [View Article][PubMed]
    [Google Scholar]
  26. Mylonakis E. ( 2008). Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia 165:1–3 [View Article][PubMed]
    [Google Scholar]
  27. Mylonakis E., Moreno R., El Khoury J. B., Idnurm A., Heitman J., Calderwood S. B., Ausubel F. M., Diener A. ( 2005). Galleria mellonella as a model system to study Cryptococcus neoformans pathogenesis. Infect Immun 73:3842–3850 [View Article][PubMed]
    [Google Scholar]
  28. Peleg A. Y., Jara S., Monga D., Eliopoulos G. M., Moellering R. C. Jr, Mylonakis E. ( 2009). Galleria mellonella as a model system to study Acinetobacter baumannii pathogenesis and therapeutics. Antimicrob Agents Chemother 53:2605–2609 [View Article][PubMed]
    [Google Scholar]
  29. Reeves E. P., Messina C. G. M., Doyle S., Kavanagh K. ( 2004). Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella . Mycopathologia 158:73–79 [View Article][PubMed]
    [Google Scholar]
  30. Rementeria A., López-Molina N., Ludwig A., Vivanco A. B., Bikandi J., Pontón J., Garaizar J. ( 2005). Genes and molecules involved in Aspergillus fumigatus virulence. Rev Iberoam Micol 22:1–23 [View Article][PubMed]
    [Google Scholar]
  31. Renwick J., Daly P., Reeves E. P., Kavanagh K. ( 2006). Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia 161:377–384 [View Article][PubMed]
    [Google Scholar]
  32. Renwick J., Reeves E. P., Wientjes F. B., Kavanagh K. ( 2007). Translocation of proteins homologous to human neutrophil p47phox and p67phox to the cell membrane in activated hemocytes of Galleria mellonella . Dev Comp Immunol 31:347–359. [View Article][PubMed]
    [Google Scholar]
  33. Richard J. L., DeBey M. C. ( 1995). Production of gliotoxin during the pathogenic state in turkey poults by Aspergillus fumigatus Fresenius. Mycopathologia 129:111–115 [View Article][PubMed]
    [Google Scholar]
  34. Richard J. L., Dvorak T. J., Ross P. F. ( 1996). Natural occurrence of gliotoxin in turkeys infected with Aspergillus fumigatus, Fresenius. Mycopathologia 134:167–170 [View Article][PubMed]
    [Google Scholar]
  35. Rowan R., Moran C., McCann M., Kavanagh K. ( 2009). Use of Galleria mellonella larvae to evaluate the in vivo anti-fungal activity of [Ag2(mal)(phen)3]. Biometals 22:461–467 [View Article][PubMed]
    [Google Scholar]
  36. Salzet M. ( 2001). Vertebrate innate immunity resembles a mosaic of invertebrate immune responses. Trends Immunol 22:285–288 [View Article][PubMed]
    [Google Scholar]
  37. Segal A. W., Coade S. B. ( 1978). Kinetics of oxygen consumption by phagocytosing human neutrophils. Biochem Biophys Res Commun 84:611–617 [View Article][PubMed]
    [Google Scholar]
  38. Shevchenko A., Tomas H., Havlis J., Olsen J. V., Mann M. ( 2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860 [View Article][PubMed]
    [Google Scholar]
  39. Singh N., Husain S. AST Infectious Diseases Community of Practice ( 2009). Invasive aspergillosis in solid organ transplant recipients. Am J Transplant 9:Suppl. 4S180–S191 [View Article][PubMed]
    [Google Scholar]
  40. Spitznagel J. K. ( 1990). Antibiotic proteins of human neutrophils. J Clin Invest 86:1381–1386 [View Article][PubMed]
    [Google Scholar]
  41. Standish A. J., Weiser J. N. ( 2009). Human neutrophils kill Streptococcus pneumoniae via serine proteases. J Immunol 183:2602–2609 [View Article][PubMed]
    [Google Scholar]
  42. Sutton P., Waring P., Müllbacher A. ( 1996). Exacerbation of invasive aspergillosis by the immunosuppressive fungal metabolite, gliotoxin. Immunol Cell Biol 74:318–322 [View Article][PubMed]
    [Google Scholar]
  43. Tekaia F., Latgé J. P. ( 2005). Aspergillus fumigatus: saprophyte or pathogen?. Curr Opin Microbiol 8:385–392 [View Article][PubMed]
    [Google Scholar]
  44. Tsunawaki S., Yoshida L. S., Nishida S., Kobayashi T., Shimoyama T. ( 2004). Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 72:3373–3382 [View Article][PubMed]
    [Google Scholar]
  45. Vandewoude K. H., Blot S. I., Benoit D., Colardyn F., Vogelaers D. ( 2004). Invasive aspergillosis in critically ill patients: attributable mortality and excesses in length of ICU stay and ventilator dependence. J Hosp Infect 56:269–276 [View Article][PubMed]
    [Google Scholar]
  46. Vonberg R.-P., Gastmeier P. ( 2006). Nosocomial aspergillosis in outbreak settings. J Hosp Infect 63:246–254 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043786-0
Loading
/content/journal/micro/10.1099/mic.0.043786-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error