1887

Abstract

The yeast gene encodes a plasma membrane drug : H antiporter of the DHA1 family that was described as conferring resistance against the drugs quinidine, cisplatin and bleomycin and the herbicide barban, similar to its close homologue . In this work, a new physiological role for Qdr3 in polyamine homeostasis is proposed. is shown to confer resistance to the polyamines spermine and spermidine, but, unlike Qdr2, also a determinant of resistance to polyamines, Qdr3 has no apparent role in K homeostasis. transcription is upregulated in yeast cells exposed to spermine or spermidine dependent on the transcription factors Gcn4, which controls amino acid homeostasis, and Yap1, the main regulator of oxidative stress response. Yap1 was found to be a major determinant of polyamine stress resistance in yeast and is accumulated in the nucleus of yeast cells exposed to spermidine-induced stress. transcript levels were also found to increase under nitrogen or amino acid limitation; this regulation is also dependent on Gcn4. Consistent with the concept that Qdr3 plays a role in polyamine homeostasis, expression was found to decrease the intracellular accumulation of [H]spermidine, playing a role in the maintenance of the plasma membrane potential in spermidine-stressed cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043661-0
2011-04-01
2020-01-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/945.html?itemId=/content/journal/micro/10.1099/mic.0.043661-0&mimeType=html&fmt=ahah

References

  1. Albertsen, M., Bellahn, I., Krämer, R. & Waffenschmidt, S. ( 2003; ). Localization and function of the yeast multidrug transporter Tpo1p. J Biol Chem 278, 12820–12825.[CrossRef]
    [Google Scholar]
  2. Alenquer, M., Tenreiro, S. & Sá-Correia, I. ( 2006; ). Adaptive response to the antimalarial drug artesunate in yeast involves Pdr1p/Pdr3p-mediated transcriptional activation of the resistance determinants TPO1 and PDR5. FEMS Yeast Res 6, 1130–1139.[CrossRef]
    [Google Scholar]
  3. Aouida, M., Leduc, A., Poulin, R. & Ramotar, D. ( 2005; ). AGP2 encodes the major permease for high affinity polyamine import in Saccharomyces cerevisiae. J Biol Chem 280, 24267–24276.[CrossRef]
    [Google Scholar]
  4. Bockhorn, J., Balar, B., He, D., Seitomer, E., Copeland, P. R. & Kinzy, T. G. ( 2008; ). Genome-wide screen of Saccharomyces cerevisiae null allele strains identifies genes involved in selenomethionine resistance. Proc Natl Acad Sci U S A 105, 17682–17687.[CrossRef]
    [Google Scholar]
  5. Brôco, N., Tenreiro, S., Viegas, C. A. & Sá-Correia, I. ( 1999; ). FLR1 gene (ORF YBR008c) is required for benomyl and methotrexate resistance in Saccharomyces cerevisiae and its benomyl-induced expression is dependent on Pdr3 transcriptional regulator. Yeast 15, 1595–1608.[CrossRef]
    [Google Scholar]
  6. Cabrito, T. R., Teixeira, M. C., Duarte, A. A., Duque, P. & Sá-Correia, I. ( 2009; ). Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast. Appl Microbiol Biotechnol 84, 927–936.[CrossRef]
    [Google Scholar]
  7. Cohen, S. S. ( 1998; ). A Guide to the Polyamines. New York. : Oxford University Press.
    [Google Scholar]
  8. Coleman, S. T., Tseng, E. & Moye-Rowley, W. S. ( 1997; ). Saccharomyces cerevisiae basic region–leucine zipper protein regulatory networks converge at the ATR1 structural gene. J Biol Chem 272, 23224–23230.[CrossRef]
    [Google Scholar]
  9. Coleman, S. T., Epping, E. A., Steggerda, S. M. & Moye-Rowley, W. S. ( 1999; ). Yap1p activates gene transcription in an oxidant-specific fashion. Mol Cell Biol 19, 8302–8313.
    [Google Scholar]
  10. do Valle Matta, M. A., Jonniaux, J. L., Balzi, E., Goffeau, A. & van den Hazel, B. ( 2001; ). Novel target genes of the yeast regulator Pdr1p: a contribution of the TPO1 gene in resistance to quinidine and other drugs. Gene 272, 111–119.[CrossRef]
    [Google Scholar]
  11. Felder, T., Bogengruber, E., Tenreiro, S., Ellinger, A., Sá-Correia, I. & Briza, P. ( 2002; ). Dtrlp, a multidrug resistance transporter of the major facilitator superfamily, plays an essential role in spore wall maturation in Saccharomyces cerevisiae. Eukaryot Cell 1, 799–810.[CrossRef]
    [Google Scholar]
  12. Gerner, E. W. & Meyskens, F. L., Jr ( 2004; ). Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4, 781–792.[CrossRef]
    [Google Scholar]
  13. Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo, D. F., Chu, A. M., Jordan, M. I., Arkin, A. P. & Davis, R. W. ( 2004; ). Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc Natl Acad Sci U S A 101, 793–798.[CrossRef]
    [Google Scholar]
  14. Hayes, J. D. & Wolf, C. R. ( 1997; ). Molecular Genetics of Drug Resistance. Amsterdam. : Harwood Academic.
    [Google Scholar]
  15. Hinnebusch, A. G. ( 2005; ). Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol 59, 407–450.[CrossRef]
    [Google Scholar]
  16. Hoeberichts, F. A., Perez-Valle, J., Montesinos, C., Mulet, J. M., Planes, M. D., Hueso, G., Yenush, L., Sharma, S. C. & Serrano, R. ( 2010; ). The role of K+ and H+ transport systems during glucose- and H2O2-induced cell death in Saccharomyces cerevisiae. Yeast 27, 713–725.[CrossRef]
    [Google Scholar]
  17. Huh, W. K., Falvo, J. V., Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S. & O'Shea, E. K. ( 2003; ). Global analysis of protein localization in budding yeast. Nature 425, 686–691.[CrossRef]
    [Google Scholar]
  18. Igarashi, K. & Kashiwagi, K. ( 2010; ). Characteristics of cellular polyamine transport in prokaryotes and eukaryotes. Plant Physiol Biochem 48, 506–512.[CrossRef]
    [Google Scholar]
  19. Jungwirth, H. & Kuchler, K. ( 2006; ). Yeast ABC transporters – a tale of sex, stress, drugs and aging. FEBS Lett 580, 1131–1138.[CrossRef]
    [Google Scholar]
  20. Kanazawa, S., Driscoll, M. & Struhl, K. ( 1988; ). ATR1, a Saccharomyces cerevisiae gene encoding a transmembrane protein required for aminotriazole resistance. Mol Cell Biol 8, 664–673.
    [Google Scholar]
  21. Kay, D. G., Singer, R. A. & Johnston, G. C. ( 1980; ). Ornithine decarboxylase activity and cell cycle regulation in Saccharomyces cerevisiae. J Bacteriol 141, 1041–1046.
    [Google Scholar]
  22. Kaya, A., Karakaya, H. C., Fomenko, D. E., Gladyshev, V. N. & Koc, A. ( 2009; ). Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol 29, 3665–3674.[CrossRef]
    [Google Scholar]
  23. Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., Hannett, N. M., Harbison, C. T., Thompson, C. M. & other authors ( 2002; ). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804.[CrossRef]
    [Google Scholar]
  24. Monteiro, P. T., Mendes, N. D., Teixeira, M. C., d'Orey, S., Tenreiro, S., Mira, N. P., Pais, H., Francisco, A. P., Carvalho, A. M. & other authors ( 2008; ). yeastractdiscoverer: new tools to improve the analysis of transcriptional regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 36 (Database issue), D132–D136.[CrossRef]
    [Google Scholar]
  25. Mozdzan, M., Szemraj, J., Rysz, J., Stolarek, R. A. & Nowak, D. ( 2006; ). Anti-oxidant activity of spermine and spermidine re-evaluated with oxidizing systems involving iron and copper ions. Int J Biochem Cell Biol 38, 69–81.[CrossRef]
    [Google Scholar]
  26. Nunes, P. A., Tenreiro, S. & Sá-Correia, I. ( 2001; ). Resistance and adaptation to quinidine in Saccharomyces cerevisiae: role of QDR1 (YIL120w), encoding a plasma membrane transporter of the major facilitator superfamily required for multidrug resistance. Antimicrob Agents Chemother 45, 1528–1534.[CrossRef]
    [Google Scholar]
  27. Paulsen, I. T. ( 2003; ). Multidrug efflux pumps and resistance: regulation and evolution. Curr Opin Microbiol 6, 446–451.[CrossRef]
    [Google Scholar]
  28. Paulsen, I. T., Sliwinski, M. K., Nelissen, B., Goffeau, A. & Saier, M. H., Jr ( 1998; ). Unified inventory of established and putative transporters encoded within the complete genome of Saccharomyces cerevisiae. FEBS Lett 430, 116–125.[CrossRef]
    [Google Scholar]
  29. Prasad, R., Panwar, S. L. & Smriti , ( 2002; ). Drug resistance in yeasts – an emerging scenario. Adv Microb Physiol 46, 155–201.
    [Google Scholar]
  30. Rieger, K. J., El-Alama, M., Stein, G., Bradshaw, C., Slonimski, P. P. & Maundrell, K. ( 1999; ). Chemotyping of yeast mutants using robotics. Yeast 15 (10B), 973–986.[CrossRef]
    [Google Scholar]
  31. Roepe, P. D., Wei, L. Y., Hoffman, M. M. & Fritz, F. ( 1996; ). Altered drug translocation mediated by the MDR protein: direct, indirect, or both? J Bioenerg Biomembr 28, 541–555.[CrossRef]
    [Google Scholar]
  32. Rosa, M. F. & Sá-Correia, I. ( 1996; ). Intracellular acidification does not account for inhibition of Saccharomyces cerevisiae growth in the presence of ethanol. FEMS Microbiol Lett 135, 271–274.[CrossRef]
    [Google Scholar]
  33. Sá-Correia, I. & Tenreiro, S. ( 2002; ). The multidrug resistance transporters of the major facilitator superfamily, 6 years after disclosure of Saccharomyces cerevisiae genome sequence. J Biotechnol 98, 215–226.[CrossRef]
    [Google Scholar]
  34. Sá-Correia, I., dos Santos, S. C., Teixeira, M. C., Cabrito, T. R. & Mira, N. P. ( 2009; ). Drug : H+ antiporters in chemical stress response in yeast. Trends Microbiol 17, 22–31.[CrossRef]
    [Google Scholar]
  35. Tachihara, K., Uemura, T., Kashiwagi, K. & Igarashi, K. ( 2005; ). Excretion of putrescine and spermidine by the protein encoded by YKL174c (TPO5) in Saccharomyces cerevisiae. J Biol Chem 280, 12637–12642.[CrossRef]
    [Google Scholar]
  36. Teixeira, M. C. & Sá-Correia, I. ( 2002; ). Saccharomyces cerevisiae resistance to chlorinated phenoxyacetic acid herbicides involves Pdr1p-mediated transcriptional activation of TPO1 and PDR5 genes. Biochem Biophys Res Commun 292, 530–537.[CrossRef]
    [Google Scholar]
  37. Teixeira, M. C., Monteiro, P., Jain, P., Tenreiro, S., Fernandes, A. R., Mira, N. P., Alenquer, M., Freitas, A. T., Oliveira, A. L. & Sá-Correia, I. ( 2006; ). The yeastract database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucleic Acids Res 34 (Database issue), D446–D451.[CrossRef]
    [Google Scholar]
  38. Teixeira, M. C., Dias, P. J., Simões, T. & Sá-Correia, I. ( 2008; ). Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1. Biochem Biophys Res Commun 367, 249–255.[CrossRef]
    [Google Scholar]
  39. Teixeira, M. C., Dias, P. J., Monteiro, P. T., Sala, A., Oliveira, A. L., Freitas, A. T. & Sá-Correia, I. ( 2010; ). Refining current knowledge on the yeast FLR1 regulatory network by combined experimental and computational approaches. Mol Biosyst 6, 2471–2481.[CrossRef]
    [Google Scholar]
  40. Tenreiro, S., Fernandes, A. R. & Sá-Correia, I. ( 2001; ). Transcriptional activation of FLR1 gene during Saccharomyces cerevisiae adaptation to growth with benomyl: role of Yap1p and Pdr3p. Biochem Biophys Res Commun 280, 216–222.[CrossRef]
    [Google Scholar]
  41. Tenreiro, S., Nunes, P. A., Viegas, C. A., Neves, M. S., Teixeira, M. C., Cabral, M. G. & Sá-Correia, I. ( 2002; ). AQR1 gene (ORF YNL065w) encodes a plasma membrane transporter of the major facilitator superfamily that confers resistance to short-chain monocarboxylic acids and quinidine in Saccharomyces cerevisiae. Biochem Biophys Res Commun 292, 741–748.[CrossRef]
    [Google Scholar]
  42. Tenreiro, S., Vargas, R. C., Teixeira, M. C., Magnani, C. & Sá-Correia, I. ( 2005; ). The yeast multidrug transporter Qdr3 (Ybr043c): localization and role as a determinant of resistance to quinidine, barban, cisplatin, and bleomycin. Biochem Biophys Res Commun 327, 952–959.[CrossRef]
    [Google Scholar]
  43. Tomitori, H., Kashiwagi, K., Sakata, K., Kakinuma, Y. & Igarashi, K. ( 1999; ). Identification of a gene for a polyamine transport protein in yeast. J Biol Chem 274, 3265–3267.[CrossRef]
    [Google Scholar]
  44. Tomitori, H., Kashiwagi, K., Asakawa, T., Kakinuma, Y., Michael, A. J. & Igarashi, K. ( 2001; ). Multiple polyamine transport systems on the vacuolar membrane in yeast. Biochem J 353, 681–688.[CrossRef]
    [Google Scholar]
  45. Uemura, T., Tachihara, K., Tomitori, H., Kashiwagi, K. & Igarashi, K. ( 2005; ). Characteristics of the polyamine transporter TPO1 and regulation of its activity and cellular localization by phosphorylation. J Biol Chem 280, 9646–9652.[CrossRef]
    [Google Scholar]
  46. Uemura, T., Kashiwagi, K. & Igarashi, K. ( 2007; ). Polyamine uptake by DUR3 and SAM3 in Saccharomyces cerevisiae. J Biol Chem 282, 7733–7741.
    [Google Scholar]
  47. van de Mortel, J. B., Mulders, D., Korthout, H., Theuvenet, A. P. & Borst-Pauwels, G. W. ( 1988; ). Transient hyperpolarization of yeast by glucose and ethanol. Biochim Biophys Acta 936, 421–428.[CrossRef]
    [Google Scholar]
  48. Vargas, R. C., Tenreiro, S., Teixeira, M. C., Fernandes, A. R. & Sá-Correia, I. ( 2004; ). Saccharomyces cerevisiae multidrug transporter Qdr2p (Yil121wp): localization and function as a quinidine resistance determinant. Antimicrob Agents Chemother 48, 2531–2537.[CrossRef]
    [Google Scholar]
  49. Vargas, R. C., García-Salcedo, R., Tenreiro, S., Teixeira, M. C., Fernandes, A. R., Ramos, J. & Sá-Correia, I. ( 2007; ). Saccharomyces cerevisiae multidrug resistance transporter Qdr2 is implicated in potassium uptake, providing a physiological advantage to quinidine-stressed cells. Eukaryot Cell 6, 134–142.[CrossRef]
    [Google Scholar]
  50. Velasco, I., Tenreiro, S., Calderon, I. L. & André, B. ( 2004; ). Saccharomyces cerevisiae Aqr1 is an internal-membrane transporter involved in excretion of amino acids. Eukaryot Cell 3, 1492–1503.[CrossRef]
    [Google Scholar]
  51. Yadav, J., Muend, S., Zhang, Y. & Rao, R. ( 2007; ). A phenomics approach in yeast links proton and calcium pump function in the Golgi. Mol Biol Cell 18, 1480–1489.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043661-0
Loading
/content/journal/micro/10.1099/mic.0.043661-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error