1887

Abstract

The genetic diversity of three temperate fruit tree phytoplasmas ‘ Phytoplasma prunorum’, ‘ P. mali’ and ‘ P. pyri’ has been established by multilocus sequence analysis. Among the four genetic loci used, the genes and distinguished 30 and 24 genotypes, respectively, and showed the highest variability. Percentage of substitution for ranged from 50 to 68 % according to species. Percentage of substitution varied between 9 and 12 % for , whereas it was between 5 and 6 % for and . In the case of ‘ P. prunorum’ the three most prevalent genotypes were detected in both plants and insect vectors, confirming that the prevalent isolates are propagated by insects. The four isolates known to be hypo-virulent had the same sequence, indicating a possible monophyletic origin. Haplotype network reconstructed by eBURST revealed that among the 34 haplotypes of ‘ P. prunorum’, the four hypo-virulent isolates also grouped together in the same clade. Genotyping of some Spanish and Azerbaijanese ‘ P. pyri’ isolates showed that they shared some alleles with ‘ P. prunorum’, supporting for the first time to our knowledge, the existence of inter-species recombination between these two species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043547-0
2011-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/438.html?itemId=/content/journal/micro/10.1099/mic.0.043547-0&mimeType=html&fmt=ahah

References

  1. Arnaud G., Malembic-Maher S., Salar P., Bonnet P., Maixner M., Marcone C., Boudon-Padieu E., Foissac X. 2007; Multilocus sequence typing confirms the close genetic inter-relatedness between three distinct flavescence dorée phytoplasma strain clusters and group 16SrV phytoplasmas infecting grapevine and alder in Europe. Appl Environ Microbiol 73:4001–4010
    [Google Scholar]
  2. Bai X. D., Zhang J. H., Ewing A., Miller S. A., Jancso Radek A., Shevchenko D. V., Tsukerman K., Walunas T., Lapidus A. other authors 2006; Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J Bacteriol 188:3682–3696
    [Google Scholar]
  3. Battle A., Lavina A., Marta F., Medina V. 1999; Incidence and epidemiology of pear decline in North-Eastern Spain. First Internet Conference of Phytopathogenic Mollicutes
    [Google Scholar]
  4. Blomquist C. L., Kirkpatrick B. C. 2002a; Identification of phytoplasma taxa and insect vectors of peach yellow leaf roll disease in California. Plant Dis 86:759–763
    [Google Scholar]
  5. Blomquist C. L., Kirkpatrick B. C. 2002b; Frequency and seasonal distribution of pear psylla infected with the pear decline phytoplasma in California pear orchards. Phytopathology 92:1218–1226
    [Google Scholar]
  6. Bonfield J. K., Smith K. F., Staden R. 1995; A new DNA sequence assembly program. Nucleic Acids Res 23:4992–4999
    [Google Scholar]
  7. Carraro L., Osler R., Refatti E., Poggi-pollini C. 1988; Transmission of the possible agent of apple proliferation to Vinca rosea by dodder. Riv Pat Végetale IV:43–52
    [Google Scholar]
  8. Carraro L., Osler R., Loi N., Ermacora P., Refatti E. 1998; Transmission of European stone fruit yellows phytoplasma by Cacopsylla pruni . J Plant Pathol 80:233–239
    [Google Scholar]
  9. Choueiri E., Salar P., Jreijiri F., Zammar S. E., Danet J. L., Foissac X. 2007; First report and characterization of pear decline phytoplasma on pear in Lebanon. J Plant Pathol 89:S75
    [Google Scholar]
  10. Ciccotti A. M., Bianchedi P. L., Bragagna P., Deromedi M., Filippi M., Forno F., Mattedi L. 2007; Transmission of ‘ Candidatus Phytoplasma mali’ by root bridges under natural and experimental conditions. Bull Insectol 60:387–388
    [Google Scholar]
  11. Cimerman A., Arnaud G., Foissac X. 2006; Stolbur phytoplasma genome survey achieved using a suppression subtractive hybridization approach with high specificity. Appl Environ Microbiol 72:3274–3283
    [Google Scholar]
  12. Cornaggia D., Gentit P., , Boyé R., Desvignes J. C. 1995; A new phytoplasma disease of apricot tree: the peach vein clearing. Acta Hortic 386:448–453
    [Google Scholar]
  13. Danet J. L., Bahriz H., Cimerman A., Foissac X. 2008; New molecular typing tools to monitor fruit tree phytoplasma variability in the 16SrX taxonomic group. XXth International symposium on virus and virus-like diseases of temperate fruit crops . Acta Hortic 781:343–349
    [Google Scholar]
  14. Davies D. L., Guise C. M., Clark M. F., Adams A. N. 1992; Parry's disease of pears is similar to pear decline and is associated with mycoplasma-like organisms transmitted by Cacopsylla pyricola . Plant Pathol 41:195–203
    [Google Scholar]
  15. Ewing B., Green P. 1998; Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194
    [Google Scholar]
  16. Ewing B., Hillier L., Wendl M., Green P. 1998; Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185
    [Google Scholar]
  17. Feil E. J., Li B. C., Aanensen D. M., Hanage W. P., Spratt B. G. 2004; eburst: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530
    [Google Scholar]
  18. Frisinghelli C., Delaiti L., Grando M. S., Forti D., Vindimian M. E. 2000; Cacopsylla costalis (Flor 1861), as a vector of apple proliferation in Trentino. J Phytopathol 148:425–431
    [Google Scholar]
  19. Gordon D., Abajian C., Green P. 1998; Consed: a graphical tool for sequence finishing. Genome Res 8:195–202
    [Google Scholar]
  20. Gundersen D. E., Lee I.-M. 1996; Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathol Mediterr 35:144–151
    [Google Scholar]
  21. Jarausch B., Jarausch W. 2009; Psyllid vectors and their control. In Phytoplasmas: Genomes, Plant Hosts and Vectors pp 250–271 Edited by Weintraub P., Jones P. Wallingford: CABI;
    [Google Scholar]
  22. Jarausch W., Saillard C., Dosba F., Bové J. M. 1994; Differentiation of mycoplasmalike organisms (MLOs) in European fruit-trees by PCR using specific primers derived from the sequence of a chromosomal fragment of the apple proliferation MLO. Appl Environ Microbiol 60:2916–2923
    [Google Scholar]
  23. Jarausch W., Lansac M., Saillard C., Broquaire J. M., Dosba F. 1998; PCR assay for specific detection of European stone fruit yellows phytoplasmas and its use for epidemiological studies in France. Eur J Plant Pathol 104:17–27
    [Google Scholar]
  24. Jarausch W., Danet J. L., Labonne G., Dosba F., Broquaire J. M., Saillard C., Garnier M. 2001; Mapping the spread of apricot chlorotic leaf roll (ACLR) in southern France and implication of Cacopsylla pruni as a vector of European stone fruit yellows (ESFY) phytoplasmas. Plant Pathol 50:782–790
    [Google Scholar]
  25. Jensen D. D., Griggs W. H., Gonzales C. Q., Schneider H. 1964; Pear decline virus transmission by pear psylla. Phytopathology 54:1346–1351
    [Google Scholar]
  26. Kakizawa S., Oshima K., Ishii Y., Hoshi A., Maejima K., Jung H. Y., Yamaji Y., Namba S. 2009; Cloning of immunodominant membrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol Lett 293:92–101
    [Google Scholar]
  27. Kison H., Seemüller E. 2001; Differences in strain virulence of the European stone fruit yellows phytoplasma and susceptibility of stone fruit trees on various rootstocks to this pathogen. J Phytopathol 149:533–541
    [Google Scholar]
  28. Kube M., Schneider B., Kuhl H., Dandekar T., Heitmann K., Migdoll A. M., Reinhardt R., Seemüller E. 2008; The linear chromosome of the plant-pathogenic mycoplasma ‘ Candidatus Phytoplasma mali’. BMC Genomics 9:306
    [Google Scholar]
  29. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: Molecular Evolutionary Genetics Analysis (mega) software. Bioinformatics 17:1244–1245
    [Google Scholar]
  30. Lee I. M., Davis R. E., Gundersen-Rindal D. E. 2000; Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol 54:221–255
    [Google Scholar]
  31. Liu H.-L., Chen C.-C., Lin C.-P. 2007; Detection and identification of the phytoplasma associated with pear decline in Taiwan. Eur J Plant Pathol 117:281–291
    [Google Scholar]
  32. Lorenz K.-H., Dosba F., Poggi-Pollini C., Llacer G., Seemüller E. 1994; Phytoplasma diseases of Prunus species in Europe are caused by genetically similar organisms. Z Pflanzenkr Pflanzenchutz 101:567–575
    [Google Scholar]
  33. Lorenz K.-H., Schneider B., Ahrens U., Seemüller E. 1995; Detection of the apple proliferation and pear decline phytoplasmas by PCR amplification of ribosomal and nonribosomal DNA. Phytopathology 85:771–776
    [Google Scholar]
  34. Maiden M. C. J., Bygraves J. A., Feil E., Morelli G., Russell J. E., Urwin R., Zhang Q., Zhou J., Zurth K. other authors 1998; Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A 95:3140–3145
    [Google Scholar]
  35. Maixner M., Ahrens U., Seemüller E. 1995; Detection of the German grapevine yellows (Vergilbungskrankheit) MLO in grapevine, alternative hosts and a vector by a specific PCR procedure. Eur J Plant Pathol 101:241–250
    [Google Scholar]
  36. Malinowski T., Zandarski J., Komorowska B., Zawadzka B. 1996; Detection of pear decline phytoplasma in declining pear trees in Poland. Plant Dis 80:464
    [Google Scholar]
  37. Marcone C., Hergenhahn F., Ragozzino A., Seemüller E. 1999; Dodder transmission of pear decline, European stone fruit yellows, rubus stunt, Picris echioides yellows and cotton phyllody phytoplasmas to periwinkle. J Phytopathol 147:187–192
    [Google Scholar]
  38. Marcone C., Jarausch B., Jarausch W. 2010; Candidatus Phytoplasma prunorum, the causal agent of European stone fruit yellows: an overview. J Plant Pathol 92:19–34
    [Google Scholar]
  39. Marwitz R., Petzold H., Ozel M. 1974; Untersuchungen zur ubertragbarkeit des möglichen erregers der triebsucht des apfels auf einen krautigen wirt. J Phytopathol 81:85–91 (in German)
    [Google Scholar]
  40. Morton A., Davies D. L., Blomquist C. L., Barbara D. J. 2003; Characterization of homologues of the apple proliferation immunodominant membrane protein gene from three related phytoplasmas. Mol Plant Pathol 4:109–114
    [Google Scholar]
  41. Morvan G., Castelain C., Chastellière M. G., Audergon J. M. 1991; An account of the attempts at controling apricot chlorotic leaf roll with cross protection. Acta Hortic 293:555–561
    [Google Scholar]
  42. Oshima K., Kakizawa S., Nishigawa H., Jung H. Y., Wei W., Suzuki S., Arashida R., Nakata D., Miyata S. other authors 2004; Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma. Nat Genet 36:27–29
    [Google Scholar]
  43. Purcell A. H., Nyland G., Raju B. C., Heringor M. R. 1981; Peach yellow leaf roll epidemic in Northern California: effects of peach cultivar, tree age and proximity to pear orchards. Plant Dis 65:365–368
    [Google Scholar]
  44. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  45. Schneider B., Seemüller E. 2009; Strain differentiation of Candidatus Phytoplasma mali by SSCP and sequence analyses of the hflB gene. J Plant Pathol 91:103–112
    [Google Scholar]
  46. Seemüller E. 1990; Apple proliferation. In Compendium of Apple and Pear Diseases Edited by Jones A. L., Aldwinkle H. S. pp 67–68 St Paul, USA: American Phytopathological Society;
    [Google Scholar]
  47. Seemüller E., Schneider B. 2004; Candidatus Phytoplasma mali’, ‘ Candidatus Phytoplasma pyri’ and ‘ Candidatus Phytoplasma prunorum’, the causal agents of apple proliferation, pear decline and European stone fruit yellows, respectively. Int J Syst Evol Microbiol 54:1217–1226
    [Google Scholar]
  48. Seemüller E., Schneider B. 2007; Differences in virulence and genomic features of strains of ‘Candidatus Phytoplasma mali', the apple proliferation agent. Phytopathology 97:964–970
    [Google Scholar]
  49. Sertkaya G., Martini M., Osler R. 2008; First report of Candidatus phytoplasma mali in Turkey. J Plant Pathol 90:143
    [Google Scholar]
  50. Sharbatkhari M., Bahar M., Ahoonmanesh A. 2008; Detection of the phytoplasmal agent of pear decline in Iran, Isfahan province, using nested-PCR. International Journal of Plant Production 2:167–173
    [Google Scholar]
  51. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  52. Tran-Nguyen L. T. T., Kube M., Schneider B., Reinhardt R., Gibb K. S. 2008; Comparative genome analysis of “ Candidatus Phytoplasma australiense” (subgroup tuf-Australia I; rp-A) and “ Ca. Phytoplasma asteris” strains OY-M and AY-WB. J Bacteriol 190:3979–3991
    [Google Scholar]
  53. Urwin R., Maiden M. C. J. 2003; Multi-locus sequence typing: a tool for global epidemiology. Trends Microbiol 11:479–487
    [Google Scholar]
  54. Weintraub P. G., Beanland L. 2006; Insect vectors of phytoplasmas. Annu Rev Entomol 51:91–111
    [Google Scholar]
  55. Weisburg W. G., Tully J. G., Rose D. L., Petzel J. P., Oyaizu H., Yang D., Mandelco L., Sechrest J., Lawrence T. G. other authors 1989; A phylogenetic analysis of the mycoplasmas: basis for their classification. J Bacteriol 171:6455–6467
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043547-0
Loading
/content/journal/micro/10.1099/mic.0.043547-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error