1887

Abstract

is a Gram-negative obligate intracellular pathogen and the causative agent of Q fever in humans. Q fever causes acute flu-like symptoms and may develop into a chronic disease leading to endocarditis. Its potential as a bioweapon has led to its classification as a category B select agent. An effective inactivated whole-cell vaccine (WCV) currently exists but causes severe granulomatous/necrotizing reactions in individuals with prior exposure, and is not licensed for use in most countries. Current efforts to reduce or eliminate the deleterious reactions associated with WCVs have focused on identifying potential subunit vaccine candidates. Both humoral and T cell-mediated responses are required for protection in animal models. In this study, nine novel immunogenic proteins were identified in extracted whole-cell lysates using 2D electrophoresis, immunoblotting with immune guinea pig sera, and tandem MS. The immunogenic proteins elicited antigen-specific IgG in guinea pigs vaccinated with whole-cell killed Nine Mile phase I vaccine, suggesting a T cell-dependent response. Eleven additional proteins previously shown to react with immune human sera were also antigenic in guinea pigs, showing the relevance of the guinea pig immunization model for antigen discovery. The antigens described here warrant further investigation to validate their potential use as subunit vaccine candidates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043513-0
2011-02-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/526.html?itemId=/content/journal/micro/10.1099/mic.0.043513-0&mimeType=html&fmt=ahah

References

  1. Andoh, M., Naganawa, T., Hotta, A., Yamaguchi, T., Fukushi, H., Masegi, T. & Hirai, K. ( 2003; ). SCID mouse model for lethal Q fever. Infect Immun 71, 4717–4723.[CrossRef]
    [Google Scholar]
  2. Andoh, M., Zhang, G., Russell-Lodrigue, K. E., Shive, H. R., Weeks, B. R. & Samuel, J. E. ( 2007; ). T cells are essential for bacterial clearance, and gamma interferon, tumor necrosis factor alpha, and B cells are critical for disease development in Coxiella burnetii infection in mice. Infect Immun 75, 3245–3255.[CrossRef]
    [Google Scholar]
  3. Arricau Bouvery, N., Souriau, A., Lechopier, P. & Rodolakis, A. ( 2003; ). Experimental Coxiella burnetii infection in pregnant goats: excretion routes. Vet Res 34, 423–433.[CrossRef]
    [Google Scholar]
  4. Ascher, M. S., Williams, J. C. & Berman, M. A. ( 1983; ). Dermal granulomatous hypersensitivity in Q fever: comparative studies of the granulomatous potential of whole cells of Coxiella burnetii phase I and subfractions. Infect Immun 42, 887–889.
    [Google Scholar]
  5. Baca, O. G. ( 1978; ). Comparison of ribosomes from Coxiella burnetii and Escherichia coli by gel electrophoresis, protein synthesis, and immunological techniques. J Bacteriol 136, 429–432.
    [Google Scholar]
  6. Balasubramanian, S., Kannan, T. R. & Baseman, J. B. ( 2008; ). The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin. Infect Immun 76, 3116–3123.[CrossRef]
    [Google Scholar]
  7. Bansal, R., Deobald, L. A., Crawford, R. L. & Paszczynski, A. J. ( 2009; ). Proteomic detection of proteins involved in perchlorate and chlorate metabolism. Biodegradation 20, 603–620.[CrossRef]
    [Google Scholar]
  8. Barel, M., Hovanessian, A. G., Meibom, K., Briand, J. P., Dupuis, M. & Charbit, A. ( 2008; ). A novel receptor–ligand pathway for entry of Francisella tularensis in monocyte-like THP-1 cells: interaction between surface nucleolin and bacterial elongation factor Tu. BMC Microbiol 8, 145.[CrossRef]
    [Google Scholar]
  9. Beare, P. A., Chen, C., Bouman, T., Pablo, J., Unal, B., Cockrell, D. C., Brown, W. C., Barbian, K. D., Porcella, S. F. & other authors ( 2008; ). Candidate antigens for Q fever serodiagnosis revealed by immunoscreening of a Coxiella burnetii protein microarray. Clin Vaccine Immunol 15, 1771–1779.[CrossRef]
    [Google Scholar]
  10. Beare, P. A., Unsworth, N., Andoh, M., Voth, D. E., Omsland, A., Gilk, S. D., Williams, K. P., Sobral, B. W., Kupko, J. J. & other authors ( 2009; ). Comparative genomics reveal extensive transposon-mediated genomic plasticity and diversity among potential effector proteins within the genus Coxiella. Infect Immun 77, 642–656.[CrossRef]
    [Google Scholar]
  11. Boonjakuakul, J. K., Gerns, H. L., Chen, Y. T., Hicks, L. D., Minnick, M. F., Dixon, S. E., Hall, S. C. & Koehler, J. E. ( 2007; ). Proteomic and immunoblot analyses of Bartonella quintana total membrane proteins identify antigens recognized by sera from infected patients. Infect Immun 75, 2548–2561.[CrossRef]
    [Google Scholar]
  12. Coleman, S. A., Fisher, E. R., Cockrell, D. C., Voth, D. E., Howe, D., Mead, D. J., Samuel, J. E. & Heinzen, R. A. ( 2007; ). Proteome and antigen profiling of Coxiella burnetii developmental forms. Infect Immun 75, 290–298.[CrossRef]
    [Google Scholar]
  13. Connolly, J. P., Comerci, D., Alefantis, T. G., Walz, A., Quan, M., Chafin, R., Grewal, P., Mujer, C. V., Ugalde, R. A. & Delvecchio, V. G. ( 2006; ). Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics 6, 3767–3780.[CrossRef]
    [Google Scholar]
  14. Eberhardt, C., Engelmann, S., Kusch, H., Albrecht, D., Hecker, M., Autenrieth, I. B. & Kempf, V. A. J. ( 2009; ). Proteomic analysis of the bacterial pathogen Bartonella henselae and identification of immunogenic proteins for serodiagnosis. Proteomics 9, 1967–1981.[CrossRef]
    [Google Scholar]
  15. Gilmore, R. D., Jr, Carpio, A. M., Kosoy, M. Y. & Gage, K. L. ( 2003; ). Molecular characterization of the sucB gene encoding the immunogenic dihydrolipoamide succinyltransferase protein of Bartonella vinsonii subsp. berkhoffi and Bartonella quintana. Infect Immun 71, 4818–4822.[CrossRef]
    [Google Scholar]
  16. Hackstadt, T., Peacock, M. G., Hitchkock, P. J. & Cole, R. L. ( 1985; ). Lipopolysaccharide variation in Coxiella burnetii: intrastrain heterogeneity in structure and antigenicity. Infect Immun 48, 359–365.
    [Google Scholar]
  17. Hartley, M. G., Green, M., Choules, G., Rogers, D., Rees, D. G. C., Newstead, S., Sjostedt, A. & Titball, R. W. ( 2004; ). Protection afforded by heat shock protein 60 from Francisella tularensis is due to copurified lipopolysaccharide. Infect Immun 72, 4109–4113.[CrossRef]
    [Google Scholar]
  18. Hendrix, L. R. & Mallavia, L. P. ( 1984; ). Active transport of proline by Coxiella burnetii. J Gen Microbiol 130, 2857–2863.
    [Google Scholar]
  19. Hendrix, L. R., Mallavia, L. P. & Samuel, J. E. ( 1993; ). Cloning and sequencing of Coxiella burnetii outer membrane protein gene com1. Infect Immun 61, 470–477.
    [Google Scholar]
  20. Hoover, T. A., Culp, D. W., Vodkin, M. H., Williams, J. C. & Thompson, H. A. ( 2002; ). Chromosomal DNA deletions explain phenotypic characteristics of two antigenic variants, phase II and RSA 514 (Crazy), of the Coxiella burnetii Nine Mile strain. Infect Immun 70, 6726–6733.[CrossRef]
    [Google Scholar]
  21. Izzo, A. A., Marmion, B. P. & Hackstadt, T. ( 1991; ). Analysis of the cells involved in the lymphoproliferative response to Coxiella burnetii antigens. Clin Exp Immunol 85, 98–108.
    [Google Scholar]
  22. Janovská, S., Pávková, I., Hubálek, M., Lenčo, J., Macela, A. & Stulík, J. ( 2007; ). Identification of immunoreactive antigens in membrane proteins enriched fraction from Francisella tularensis LVS. Immunol Lett 108, 151–159.[CrossRef]
    [Google Scholar]
  23. Knaust, A., Weber, M. V. R., Hammerschmidt, S., Bergmann, S., Frosch, M. & Kurzai, O. ( 2007; ). Cytosolic proteins contribute to surface plasminogen recruitment of Neisseria meningitidis. J Bacteriol 189, 3246–3255.[CrossRef]
    [Google Scholar]
  24. Li, Q., Niu, D., Wen, B., Chen, M., Qiu, L. & Zhang, J. ( 2005; ). Protective immunity against Q fever induced with recombinant P1 antigen fused with HspB of Coxiella burnetii. Ann N Y Acad Sci 1063, 130–142.[CrossRef]
    [Google Scholar]
  25. Lopez, J. E., Siems, W. F., Palmer, G. H., Brayton, K. A., McGuire, T. C., Norimine, J. & Brown, W. C. ( 2005; ). Identification of novel antigenic proteins in a complex Anaplasma marginale outer membrane immunogen by mass spectrometry and genome mapping. Infect Immun 73, 8109–8118.[CrossRef]
    [Google Scholar]
  26. Maurin, M. & Raoult, D. ( 1999; ). Q fever. Clin Microbiol Rev 12, 518–553.
    [Google Scholar]
  27. Mayer, F. ( 2003; ). Cytoskeletons in prokaryotes. Cell Biol Int 27, 429–438.[CrossRef]
    [Google Scholar]
  28. Noh, S. M., Brayton, K. A., Brown, W. C., Norimine, J., Munske, G. R., Davitt, C. M. & Palmer, G. H. ( 2008; ). Composition of the surface proteome of Anaplasma marginale and its role in protective immunity induced by outer membrane immunization. Infect Immun 76, 2219–2226.[CrossRef]
    [Google Scholar]
  29. Ogawa, M., Renesto, P., Azza, S., Moinier, D., Fourquet, P., Gorvel, J. P. & Raoult, D. ( 2007; ). Proteome analysis of Rickettsia felis highlights the expression profile of intracellular bacteria. Proteomics 7, 1232–1248.[CrossRef]
    [Google Scholar]
  30. Poznanovic, S., Schwall, G., Zengerling, H. & Cahill, M. A. ( 2005; ). Isoelectric focusing in serial immobilized pH gradient gels to improve protein separation in proteomic analysis. Electrophoresis 26, 3185–3190.[CrossRef]
    [Google Scholar]
  31. Russell-Lodrigue, K. E., Zhang, G. Q., McMurray, D. N. & Samuel, J. E. ( 2006; ). Clinical and pathologic changes in a guinea pig aerosol challenge model of acute Q fever. Infect Immun 74, 6085–6091.[CrossRef]
    [Google Scholar]
  32. Russell-Lodrigue, K. E., Andoh, M., Poels, W. J., Shive, H. R., Weeks, B. R., Zhang, G. Q., Tersteeg, C., Masegi, T., Hotta, A. & other authors ( 2009; ). Coxiella burnetii isolates cause genogroup-specific virulence in mouse and guinea pig models of acute Q fever. Infect Immun 77, 5640–5650.[CrossRef]
    [Google Scholar]
  33. Samoilis, G., Psaroulaki, A., Vougas, K., Tselentis, Y. & Tsiotis, G. ( 2007; ). Analysis of whole cell lysate from the intracellular bacterium Coxiella burnetii using two gel-based protein separation techniques. J Proteome Res 6, 3032–3041.[CrossRef]
    [Google Scholar]
  34. Sekeyová, Z., Kowalczewska, M., Decloquement, P., Pelletier, N., Špitalská, E. & Raoult, D. ( 2009; ). Identification of protein candidates for the serodiagnosis of Q fever endocarditis by an immunoproteomic approach. Eur J Clin Microbiol Infect Dis 28, 287–295.[CrossRef]
    [Google Scholar]
  35. Seshadri, R., Hendrix, L. R. & Samuel, J. E. ( 1999; ). Differential expression of translational elements by life cycle variants of Coxiella burnetii. Infect Immun 67, 6026–6033.
    [Google Scholar]
  36. Seshadri, R., Paulsen, I. T., Eisen, J. A., Read, T. D., Nelson, K. E., Nelson, W. C., Ward, N. L., Tettelin, H., Davidsen, T. M. & other authors ( 2003; ). Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc Natl Acad Sci U S A 100, 5455–5460.[CrossRef]
    [Google Scholar]
  37. Shannon, J. G. & Heinzen, R. A. ( 2009; ). Adaptive immunity to the obligate intracellular pathogen Coxiella burnetii. Immunol Res 43, 138–148.[CrossRef]
    [Google Scholar]
  38. Shannon, J. G., Cockrell, D. C., Takahashi, K., Stahl, G. L. & Heinzen, R. A. ( 2009; ). Antibody-mediated immunity to the obligate intracellular bacterial pathogen Coxiella burnetii is Fc receptor- and complement-independent. BMC Immunol 10, 26.[CrossRef]
    [Google Scholar]
  39. Tzeng, Y. L., Datta, A., Strole, C., Kumar Kollie, V. S., Birck, M. R., Taylor, W. P., Carlson, R. W., Woodard, R. W. & Stephens, D. S. ( 2002; ). KpsF is the arabinose-5-phosphate isomerase required for 3-deoxy-d-manno-octulosonic acid biosynthesis and for both lipooligosaccharide assembly and capsular polysaccharide expression in Neisseria meningiditis. J Biol Chem 277, 24103–24113.[CrossRef]
    [Google Scholar]
  40. Vigil, A., Ortega, R., Nakajima-Sasaki, R., Pablo, J., Molina, D. M., Chao, C. C., Chen, H. W., Ching, W. M. & Felgner, P. L. ( 2010; ). Genome-wide profiling of humoral immune response to Coxiella burnetii infection by protein array. Proteomics 10, 2259–2269.[CrossRef]
    [Google Scholar]
  41. Vodkin, M. H. & Williams, J. C. ( 1986; ). Overlapping deletion in two spontaneous phase variants of Coxiella burnetii. J Gen Microbiol 132, 2587–2594.
    [Google Scholar]
  42. Voth, D. E. & Heinzen, R. A. ( 2007; ). Lounging in a lysosome: the intracellular lifestyle of Coxiella burnetii. Cell Microbiol 9, 829–840.[CrossRef]
    [Google Scholar]
  43. Waag, D. M., England, M. J. & Pitt, M. L. M. ( 1997; ). Comparative efficacy of a Coxiella burnetii chloroform : methanol residue (CMR) vaccine and a licensed cellular vaccine (Q-Vax) in rodents challenged by aerosol. Vaccine 15, 1779–1783.[CrossRef]
    [Google Scholar]
  44. Waag, D. M., England, M. J., Tammariello, R. F., Byrne, W. R., Gibbs, P., Banfield, C. M. & Pitt, M. L. M. ( 2002; ). Comparative efficacy and immunogenicity of Q fever chloroform : methanol residue (CMR) and phase I cellular (Q-Vax) vaccines in cyanomolgus monkeys challenged by aerosol. Vaccine 20, 2623–2634.[CrossRef]
    [Google Scholar]
  45. Williams, J. C. & Cantrell, J. L. ( 1982; ). Biological and immunological properties of Coxiella burnetii vaccines in C57BL/10ScN endotoxin-nonresponder mice. Infect Immun 35, 1091–1102.
    [Google Scholar]
  46. Williams, J. C., Peacock, M. G. & McCaul, T. F. ( 1981; ). Immunological and biological characterization of Coxiella burnetii, phases I and II, separated from host components. Infect Immun 32, 840–851.
    [Google Scholar]
  47. Williams, J. C., Damrow, T. A., Wagg, D. M. & Amano, K. I. ( 1986; ). Characterization of phase I Coxiella burnetii chloroform-methanol residue vaccine that induces active immunity against Q fever in C57BL/10 mice. Infect Immun 51, 851–858.
    [Google Scholar]
  48. Williams, J. C., Hoover, T. A., Waag, D. M., Banerjee-Bhatnagar, N., Bolt, C. R. & Scott, G. H. ( 1990; ). Antigenic structure of Coxiella burnetii. A comparison of lipopolysaccharide and protein antigens as vaccines against Q fever. Ann N Y Acad Sci 590, 370–380.[CrossRef]
    [Google Scholar]
  49. Xolalpa, W., Vallecillo, A. J., Lara, M., Mendoza-Hernandez, G., Comini, M., Spallek, R., Singh, M. & Espitia, C. ( 2007; ). Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis. Proteomics 7, 3332–3341.[CrossRef]
    [Google Scholar]
  50. Zhang, G. Q. & Samuel, J. E. ( 2003; ). Identification and cloning potentially protective antigens of Coxiella burnetii using sera from mice experimentally infected with Nine Mile phase I. Ann N Y Acad Sci 990, 510–520.[CrossRef]
    [Google Scholar]
  51. Zhang, Y. X., Zhi, N., Yu, S. R., Li, Q. J., Yu, G. Q. & Zhang, X. ( 1994; ). Protective immunity induced by 67 K outer membrane protein of phase I Coxiella burnetii in mice and guinea pigs. Acta Virol 38, 327–332.
    [Google Scholar]
  52. Zhang, G., Russell-Lodrigue, K. E., Andoh, M., Zhang, Y., Hendrix, L. R. & Samuel, J. E. ( 2007; ). Mechanisms of vaccine-induced protective immunity against Coxiella burnetii infection in BALB/c mice. J Immunol 179, 8372–8380.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043513-0
Loading
/content/journal/micro/10.1099/mic.0.043513-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error