1887

Abstract

Heterocyst-forming cyanobacteria are able to perform oxygenic photosynthesis and nitrogen fixation simultaneously in the same filament, by restricting the highly O-sensitive nitrogenase to specialized cells, the heterocysts. A remarkable change in morphology and metabolism accompanies the differentiation of heterocysts, which only occurs when no source of combined nitrogen is available. In this study, we characterized DevT (Alr4674), a putative protein phosphatase from PCC 7120. Mutants defective in are able to form morphologically mature heterocysts, which however cannot fix N, and the mutant cannot survive without a source of combined nitrogen. DevT shows homology to phosphatases of the PPP family and displays a Mn-dependent phosphatase activity that can be inhibited by phosphatase inhibitors and oxidizing conditions. DevT is constitutively expressed in both vegetative cells and heterocysts, and is not regulated by NtcA. The heterocyst regulator HetR may exert a certain inhibition on the expression of . Under diazotrophic growth conditions, DevT protein accumulates specifically in mature heterocysts. Therefore DevT plays a still unknown role in a late essential step of heterocyst differentiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043398-0
2010-12-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3544.html?itemId=/content/journal/micro/10.1099/mic.0.043398-0&mimeType=html&fmt=ahah

References

  1. Adams, D. G. ( 2000; ). Heterocyst formation in cyanobacteria. Curr Opin Microbiol 3, 618–624.[CrossRef]
    [Google Scholar]
  2. Adams, D. G. & Carr, N. G. ( 1981; ). The developmental biology of heterocyst and akinete formation in cyanobacteria. Crit Rev Microbiol 9, 45–100.[CrossRef]
    [Google Scholar]
  3. Aldea, M. R., Kumar, K. & Golden, J. W. ( 2008; ). Heterocyst development and pattern formation. In Chemical Communication Among Bacteria, pp. 75–90. Edited by Winans, S. C. & Bassler, B. L.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  4. Allen, M. B. & Arnon, D. I. ( 1955; ). Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm. Plant Physiol 30, 366–372.[CrossRef]
    [Google Scholar]
  5. Barford, D. ( 1996; ). Molecular mechanisms of the protein serine/threonine phosphatases. Trends Biochem Sci 21, 407–412.[CrossRef]
    [Google Scholar]
  6. Barton, G. J., Cohen, P. T. & Barford, D. ( 1994; ). Conservation analysis and structure prediction of the protein serine/threonine phosphatases. Sequence similarity with diadenosine tetraphosphatase from Escherichia coli suggests homology to the protein phosphatases. Eur J Biochem 220, 225–237.[CrossRef]
    [Google Scholar]
  7. Black, T. A. & Wolk, C. P. ( 1994; ). Analysis of a Het mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J Bacteriol 176, 2282–2292.
    [Google Scholar]
  8. Black, T. A., Cai, Y. & Wolk, C. P. ( 1993; ). Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 9, 77–84.[CrossRef]
    [Google Scholar]
  9. Buikema, W. J. & Haselkorn, R. ( 1991; ). Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev 5, 321–330.[CrossRef]
    [Google Scholar]
  10. Cai, Y. P. & Wolk, C. P. ( 1990; ). Use of a conditionally lethal gene in Anabaena sp. strain PCC 7120 to select for double recombinants and to entrap insertion sequences. J Bacteriol 172, 3138–3145.
    [Google Scholar]
  11. Cardemil, L. & Wolk, C. P. ( 1981; ). Isolated heterocysts of Anabaena variabilis synthesize envelope polysaccharide. Biochim Biophys Acta 674, 265–276.[CrossRef]
    [Google Scholar]
  12. Cohen, P. ( 1989; ). The structure and regulation of protein phosphatases. Annu Rev Biochem 58, 453–508.[CrossRef]
    [Google Scholar]
  13. Ehira, S., Ohmori, M. & Sato, N. ( 2003; ). Genome-wide expression analysis of the responses to nitrogen deprivation in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 10, 97–113.[CrossRef]
    [Google Scholar]
  14. Elhai, J. & Wolk, C. P. ( 1988a; ). A versatile class of positive-selection vectors based on the nonviability of palindrome-containing plasmids that allows cloning into long polylinkers. Gene 68, 119–138.[CrossRef]
    [Google Scholar]
  15. Elhai, J. & Wolk, C. P. ( 1988b; ). Conjugal transfer of DNA to cyanobacteria. Methods Enzymol 167, 747–754.
    [Google Scholar]
  16. Ernst, A., Black, T., Cai, Y., Panoff, J. M., Tiwari, D. N. & Wolk, C. P. ( 1992; ). Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism. J Bacteriol 174, 6025–6032.
    [Google Scholar]
  17. Fan, Q., Huang, G., Lechno-Yossef, S., Wolk, C. P., Kaneko, T. & Tabata, S. ( 2005; ). Clustered genes required for synthesis and deposition of envelope glycolipids in Anabaena sp. strain PCC 7120. Mol Microbiol 58, 227–243.[CrossRef]
    [Google Scholar]
  18. Fay, P. & Kulasooriya, S. A. ( 1972; ). Tetrazolium reduction and nitrogenase activity in heterocystous blue-green algae. Arch Mikrobiol 87, 341–352.[CrossRef]
    [Google Scholar]
  19. Fiedler, G., Arnold, M., Hannus, S. & Maldener, I. ( 1998; ). The DevBCA exporter is essential for envelope formation in heterocysts of the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 27, 1193–1202.[CrossRef]
    [Google Scholar]
  20. Flores, E. & Herrero, A. ( 2010; ). Compartmentalized function through cell differentiation in filamentous cyanobacteria. Nat Rev Microbiol 8, 39–50.[CrossRef]
    [Google Scholar]
  21. Frías, J. E., Flores, E. & Herrero, A. ( 1994; ). Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 14, 823–832.[CrossRef]
    [Google Scholar]
  22. Golden, J. W. & Yoon, H. S. ( 2003; ). Heterocyst development in Anabaena. Curr Opin Microbiol 6, 557–563.[CrossRef]
    [Google Scholar]
  23. Gupta, R. S. & Mathews, D. W. ( 2010; ). Signature proteins for the major clades of cyanobacteria. BMC Evol Biol 10, 24.[CrossRef]
    [Google Scholar]
  24. Herrero, A., Muro-Pastor, A. M. & Flores, E. ( 2001; ). Nitrogen control in cyanobacteria. J Bacteriol 183, 411–425.[CrossRef]
    [Google Scholar]
  25. Herrero, A., Muro-Pastor, A. M., Valladares, A. & Flores, E. ( 2004; ). Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28, 469–487.[CrossRef]
    [Google Scholar]
  26. Huang, X., Dong, Y. & Zhao, J. ( 2004; ). HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci U S A 101, 4848–4853.[CrossRef]
    [Google Scholar]
  27. Jang, J., Wang, L., Jeanjean, R. & Zhang, C.-C. ( 2007; ). PrpJ, a PP2C-type protein phosphatase located on the plasma membrane, is involved in heterocyst maturation in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 64, 347–358.[CrossRef]
    [Google Scholar]
  28. Jang, J., Shi, L., Tan, H., Janicki, A. & Zhang, C.-C. ( 2009; ). Mutual regulation of ntcA and hetR during heterocyst differentiation requires two similar PP2C-type protein phosphatases, PrpJ1 and PrpJ2, in Anabaena sp. strain PCC 7120. J Bacteriol 191, 6059–6066.[CrossRef]
    [Google Scholar]
  29. Kaneko, T., Nakamura, Y., Wolk, C. P., Kuritz, T., Sasamoto, S., Watanabe, A., Iriguchi, M., Ishikawa, A., Kawashima, K. & other authors ( 2001; ). Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8, 205–213, 227–253.[CrossRef]
    [Google Scholar]
  30. Kennelly, P. J. & Potts, M. ( 1996; ). Fancy meeting you here! A fresh look at “prokaryotic” protein phosphorylation. J Bacteriol 178, 4759–4764.
    [Google Scholar]
  31. Khudyakov, I. Y. & Golden, J. W. ( 2004; ). Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation. Proc Natl Acad Sci U S A 101, 16040–16045.[CrossRef]
    [Google Scholar]
  32. Koonin, E. V. ( 1994; ). Conserved sequence pattern in a wide variety of phosphoesterases. Protein Sci 3, 356–358.
    [Google Scholar]
  33. Kumar, K., Mella-Herrera, R. A. & Golden, J. W. ( 2010; ). Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2, a000315.
    [Google Scholar]
  34. Lambein, F., Winkenbach, F., Jost, M. & Wolk, C. P. ( 1973; ). Structure and localization of long-chain glycolipids in the heterocyst envelope of a blue-green algae. Arch Int Physiol Biochim 81, 589.
    [Google Scholar]
  35. Mackinney, G. ( 1941; ). Absorption of light by chlorophyll solutions. J Biol Chem 140, 315–322.
    [Google Scholar]
  36. Maldener, I., Fiedler, G., Ernst, A., Fernández-Piñas, F. & Wolk, C. P. ( 1994; ). Characterization of devA, a gene required for the maturation of proheterocysts in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 176, 7543–7549.
    [Google Scholar]
  37. Moslavac, S., Reisinger, V., Berg, M., Mirus, O., Vosyka, O., Ploscher, M., Flores, E., Eichacker, L. A. & Schleiff, E. ( 2007; ). The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120. Biol Chem 388, 823–829.
    [Google Scholar]
  38. Mumby, M. C. & Walter, G. ( 1993; ). Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev 73, 673–699.
    [Google Scholar]
  39. Muro-Pastor, A. M., Valladares, A., Flores, E. & Herrero, A. ( 1999; ). The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J Bacteriol 181, 6664–6669.
    [Google Scholar]
  40. Muro-Pastor, A. M., Valladares, A., Flores, E. & Herrero, A. ( 2002; ). Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol Microbiol 44, 1377–1385.[CrossRef]
    [Google Scholar]
  41. Ohmori, M., Ikeuchi, M., Sato, N., Wolk, P., Kaneko, T., Ogawa, T., Kanehisa, M., Goto, S., Kawashima, S. & other authors ( 2001; ). Characterization of genes encoding multi-domain proteins in the genome of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8, 271–284.[CrossRef]
    [Google Scholar]
  42. Olmedo-Verd, E., Muro-Pastor, A. M., Flores, E. & Herrero, A. ( 2006; ). Localized induction of the ntcA regulatory gene in developing heterocysts of Anabaena sp. strain PCC 7120. J Bacteriol 188, 6694–6699.[CrossRef]
    [Google Scholar]
  43. Rusnak, F. & Reiter, T. ( 2000; ). Sensing electrons: protein phosphatase redox regulation. Trends Biochem Sci 25, 527–529.[CrossRef]
    [Google Scholar]
  44. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  45. Shi, L. ( 2004; ). Manganese-dependent protein O-phosphatases in prokaryotes and their biological functions. Front Biosci 9, 1382–1397.[CrossRef]
    [Google Scholar]
  46. Shi, Y. ( 2009; ). Serine/threonine phosphatases: mechanism through structure. Cell 139, 468–484.[CrossRef]
    [Google Scholar]
  47. Shi, L. & Carmichael, W. W. ( 1997; ). pp1-cyano2, a protein serine/threonine phosphatase 1 gene from the cyanobacterium Microcystis aeruginosa UTEX 2063. Arch Microbiol 168, 528–531.[CrossRef]
    [Google Scholar]
  48. Shi, L., Potts, M. & Kennelly, P. J. ( 1998; ). The serine, threonine, and/or tyrosine-specific protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev 22, 229–253.[CrossRef]
    [Google Scholar]
  49. Valladares, A., Maldener, I., Muro-Pastor, A. H., Flores, E. & Herrero, A. ( 2007; ). Heterocyst development and diazotrophic metabolism in terminal respiratory oxidase mutants of the cyanobacterium Anabaena sp. strain PCC7120. J Bacteriol 189, 4425–4430.[CrossRef]
    [Google Scholar]
  50. Virshup, D. M. & Shenolikar, S. ( 2009; ). From promiscuity to precision: protein phosphatases get a makeover. Mol Cell 33, 537–545.[CrossRef]
    [Google Scholar]
  51. Wang, L., Sun, Y. P., Chen, W. L., Li, J. H. & Zhang, C.-C. ( 2002; ). Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol Lett 217, 155–165.[CrossRef]
    [Google Scholar]
  52. Wolk, C. P., Vonshak, A., Kehoe, P. & Elhai, J. ( 1984; ). Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Proc Natl Acad Sci U S A 81, 1561–1565.[CrossRef]
    [Google Scholar]
  53. Wolk, C. P., Ernst, A. & Elhai, J. ( 1994; ). Heterocyst metabolism and development. In The Molecular Biology of Cyanobacteria, pp. 769–823. Edited by Bryant, D. A.. Dordrecht, The Netherlands. : Kluwer Academic Publishers.
    [Google Scholar]
  54. Xu, X., Elhai, J. & Wolk, C. P. ( 2008; ). Transcriptional and developmental responses by Anabaena to deprivation of fixed nitrogen. In The Cyanobacteria: Molecular Biology, Genomics and Evolution, pp. 383–422. Edited by Herrero, A. & Flores, E.. Norfolk, UK. : Caister Academic Press.
    [Google Scholar]
  55. Zhang, C.-C. ( 1996; ). Bacterial signalling involving eukaryotic-type protein kinases. Mol Microbiol 20, 9–15.[CrossRef]
    [Google Scholar]
  56. Zhang, C.-C. & Libs, L. ( 1998; ). Cloning and characterisation of the pknD gene encoding an eukaryotic-type protein kinase in the cyanobacterium Anabaena sp. PCC7120. Mol Gen Genet 258, 26–33.[CrossRef]
    [Google Scholar]
  57. Zhang, C.-C., Friry, A. & Peng, L. ( 1998a; ). Molecular and genetic analysis of two closely linked genes that encode, respectively, a protein phosphatase 1/2A/2B homolog and a protein kinase homolog in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 180, 2616–2622.
    [Google Scholar]
  58. Zhang, C.-C., Gonzalez, L. & Phalip, V. ( 1998b; ). Survey, analysis and genetic organization of genes encoding eukaryotic-like signaling proteins on a cyanobacterial genome. Nucleic Acids Res 26, 3619–3625.[CrossRef]
    [Google Scholar]
  59. Zhang, C.-C., Jang, J., Sakr, S. & Wang, L. ( 2005; ). Protein phosphorylation on Ser, Thr and Tyr residues in cyanobacteria. J Mol Microbiol Biotechnol 9, 154–166.[CrossRef]
    [Google Scholar]
  60. Zhang, C.-C., Laurent, S., Sakr, S., Peng, L. & Bedú, S. ( 2006; ). Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59, 367–375.[CrossRef]
    [Google Scholar]
  61. Zhou, R., Wei, X., Jiang, N., Li, H., Dong, Y., Hsi, K. L. & Zhao, J. ( 1998; ). Evidence that HetR protein is an unusual serine-type protease. Proc Natl Acad Sci U S A 95, 4959–4963.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043398-0
Loading
/content/journal/micro/10.1099/mic.0.043398-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 3544 - 3555

[ PDF, 21 kb]: Comparison of the amino acid sequence containing motifs I, II and III present in DevT with representative PPP family protein phosphatases Phylogenetic tree of DevT homologues present in the UniProtKB database)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error