1887

Abstract

Structural components of the cell surface have an impact on some of the beneficial attributes of probiotic bacteria. analysis of the NCFM genome sequence revealed the presence of a putative cell surface protein that was predicted to be a myosin cross-reactive antigen (MCRA). As MCRAs are conserved among many probiotic bacteria, we used the -based counterselective gene replacement system, designed recently for use in , to determine the functional role of this gene (LBA649) in NCFM. Phenotypic assays were undertaken with the parent strain (NCK1909) and deletion mutant (NCK2015) to assign a function for this gene. The growth of NCK2015 (ΔLBA649) was reduced in the presence of lactate, acetate, porcine bile and salt. Adhesion of NCK2015 to Caco-2 cells was substantially reduced for both stationary-phase (∼45 % reduction) and exponential-phase cells (∼50 % reduction). Analysis of NCK2015 by scanning electron microscopy revealed a longer cell morphology after growth in MRS broth compared to NCK1909. These results indicate a role for LBA649 in stress tolerance, cell wall division and adherence to Caco-2 cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043158-0
2010-11-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3360.html?itemId=/content/journal/micro/10.1099/mic.0.043158-0&mimeType=html&fmt=ahah

References

  1. Altermann E., Russell W. M., Azcarate-Peril M. A., Barrangou R., Buck B. L., McAuliffe O., Souther N., Dobson A., Duong T.. other authors 2005; Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A102:3906–3912
    [Google Scholar]
  2. Altschul S. F., Lipman D. J.. 1990; Protein database searches for multiple alignments. Proc Natl Acad Sci U S A87:5509–5513
    [Google Scholar]
  3. Azcarate-Peril M. A., Altermann E., Hoover-Fitzula R. L., Cano R. J., Klaenhammer T. R.. 2004; Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl Environ Microbiol70:5315–5322
    [Google Scholar]
  4. Azcarate-Peril M. A., McAuliffe O., Altermann E., Lick S., Russell W. M., Klaenhammer T. R.. 2005; Microarray analysis of a two-component regulatory system involved in acid resistance and proteolytic activity in Lactobacillus acidophilus. Appl Environ Microbiol71:5794–5804
    [Google Scholar]
  5. Azcarate-Peril M. A., Bruno-Barcena J. M., Hassan H. M., Klaenhammer T. R.. 2006; Transcriptional and functional analysis of oxalyl-coenzyme A (CoA) decarboxylase and formyl-CoA transferase genes from Lactobacillus acidophilus. Appl Environ Microbiol72:1891–1899
    [Google Scholar]
  6. Barrangou R., Altermann E., Hutkins R., Cano R., Klaenhammer T. R.. 2003; Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci U S A100:8957–8962
    [Google Scholar]
  7. Barrangou R., Azcarate-Peril M. A., Duong T., Conners S. B., Kelly R. M., Klaenhammer T. R.. 2006; Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays. Proc Natl Acad Sci U S A103:3816–3821
    [Google Scholar]
  8. Båth K., Roos S., Wall T., Jonsson H.. 2005; The cell surface of Lactobacillus reuteri ATCC 55730 highlighted by identification of 126 extracellular proteins from the genome sequence. FEMS Microbiol Lett253:75–82
    [Google Scholar]
  9. Begley M., Gahan C. G., Hill C.. 2005; The interaction between bacteria and bile. FEMS Microbiol Rev29:625–651
    [Google Scholar]
  10. Bendtsen J. D., Nielsen H., von Heijne G., Brunak S.. 2004; Improved prediction of signal peptides: SignalP 3.0. J Mol Biol340:783–795
    [Google Scholar]
  11. Bevers L. E., Pinkse M. W., Verhaert P. D., Hagen W. R.. 2009; Oleate hydratase catalyzes the hydration of a nonactivated carbon–carbon bond. J Bacteriol191:5010–5012
    [Google Scholar]
  12. Boneca I. G., Dussurget O., Cabanes D., Nahori M. A., Sousa S., Lecuit M., Psylinakis E., Bouriotis V., Hugot J. P.. & other authors 2007; A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A104:997–1002
    [Google Scholar]
  13. Buck B. L., Altermann E., Svingerud T., Klaenhammer T. R.. 2005; Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol71:8344–8351
    [Google Scholar]
  14. Buck B. L., Azcarate-Peril M. A., Klaenhammer T. R.. 2009; Role of autoinducer-2 on the adhesion ability of Lactobacillus acidophilus. J Appl Microbiol107:269–279
    [Google Scholar]
  15. Claros M. G., von Heijne G.. 1994; TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci10:685–686
    [Google Scholar]
  16. Coakley M., Ross R. P., Nordgren M., Fitzgerald G., Devery R., Stanton C.. 2003; Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol94:138–145
    [Google Scholar]
  17. Cserzö M., Eisenhaber F., Eisenhaber B., Simon I.. 2002; On filtering false positive transmembrane protein predictions. Protein Eng15:745–752
    [Google Scholar]
  18. Dobson A. E., Sanozky-Dawes R. B., Klaenhammer T. R.. 2007; Identification of an operon and inducing peptide involved in the production of lactacin B by Lactobacillus acidophilus. J Appl Microbiol103:1766–1778
    [Google Scholar]
  19. Fischer H., Yamamoto M., Akira S., Beutler B., Svanborg C.. 2006; Mechanism of pathogen-specific TLR4 activation in the mucosa: fimbriae, recognition receptors and adaptor protein selection. Eur J Immunol36:267–277
    [Google Scholar]
  20. Goh Y. J., Azcarate-Peril M. A., O'Flaherty S., Durmaz E., Valence F., Jardin J., Lortal S., Klaenhammer T. R.. 2009; Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol75:3093–3105
    [Google Scholar]
  21. Gopal P. K., Prasad J., Smart J., Gill H. S.. 2001; In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol67:207–216
    [Google Scholar]
  22. Grangette C., Nutten S., Palumbo E., Morath S., Hermann C., Dewulf J., Pot B., Hartung T., Hols P., Mercenier A.. 2005; Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci U S A102:10321–10326
    [Google Scholar]
  23. Hanahan D.. 1985; Techniques for transformation of E. coli. In DNA Cloning: a Practical Approach pp109–135 Edited by Glover D. M.. Oxford, UK: IRL Press Ltd;
    [Google Scholar]
  24. Jenkins J. K., Courtney P. D.. 2003; Lactobacillus growth and membrane composition in the presence of linoleic or conjugated linoleic acid. Can J Microbiol49:51–57
    [Google Scholar]
  25. Kil K. S., Cunningham M. W., Barnett L. A.. 1994; Cloning and sequence analysis of a gene encoding a 67-kilodalton myosin-cross-reactive antigen of Streptococcus pyogenes reveals its similarity with class II major histocompatibility antigens. Infect Immun62:2440–2449
    [Google Scholar]
  26. Kingsford C. L., Ayanbule K., Salzberg S. L.. 2007; Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol8:R22
    [Google Scholar]
  27. Konstantinov S. R., Smidt H., de Vos W. M., Bruijns S. C., Singh S. K., Valence F., Molle D., Lortal S., Altermann E.. other authors 2008; S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci U S A105:19474–19479
    [Google Scholar]
  28. Krogh A., Larsson B., von Heijne G., Sonnhammer E. L.. 2001; Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol305:567–580
    [Google Scholar]
  29. Law J., Buist G., Haandrikman A., Kok J., Venema G., Leenhouts K.. 1995; A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J Bacteriol177:7011–7018
    [Google Scholar]
  30. Lebeer S., Vanderleyden J., De Keersmaecker S. C.. 2010; Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol8:171–184
    [Google Scholar]
  31. Leyer G. J., Li S., Mubasher M. E., Reifer C., Ouwehand A. C.. 2009; Probiotic effects on cold and influenza-like symptom incidence and duration in children. Pediatrics124:e172–e179
    [Google Scholar]
  32. Liévin-Le Moal V., Sarrazin-Davila L. E., Servin A. L.. 2007; An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of Lactobacillus acidophilus strain LB against nonrotavirus diarrhea. Pediatrics120:e795–e803
    [Google Scholar]
  33. Lin C. K., Tsai H. C., Lin P. P., Tsen H. Y., Tsai C. C.. 2008; Lactobacillus acidophilus LAP5 able to inhibit the Salmonella choleraesuis invasion to the human Caco-2 epithelial cell. Anaerobe14:251–255
    [Google Scholar]
  34. Mohamadzadeh M., Klaenhammer T. R.. 2008; Specific Lactobacillus species differentially activate Toll-like receptors and downstream signals in dendritic cells. Expert Rev Vaccines7:1155–1164
    [Google Scholar]
  35. O'Flaherty S., Klaenhammer T. R.. 2010; The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. Int Dairy J20:262–268
    [Google Scholar]
  36. Pfeiler E. A., Klaenhammer T. R.. 2009; Role of transporter proteins in bile tolerance of Lactobacillus acidophilus. Appl Environ Microbiol75:6013–6016
    [Google Scholar]
  37. Pfeiler E. A., Azcarate-Peril M. A., Klaenhammer T. R.. 2007; Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J Bacteriol189:4624–4634
    [Google Scholar]
  38. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R.. 2005; InterProScan: protein domains identifier. Nucleic Acids Res33:W116–W120
    [Google Scholar]
  39. Roos S., Engstrand L., Jonsson H.. 2005; Lactobacillus gastricus sp. nov., Lactobacillus antri sp.nov., Lactobacillus kalixensis sp. nov. and Lactobacillus ultunensis sp. nov., isolated from human stomach mucosa. Int J Syst Evol Microbiol55:77–82
    [Google Scholar]
  40. Rousseaux C., Thuru X., Gelot A., Barnich N., Neut C., Dubuquoy L., Dubuquoy C., Merour E., Geboes K.. other authors 2007; Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat Med13:35–37
    [Google Scholar]
  41. Russell W. M., Klaenhammer T. R.. 2001; Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl Environ Microbiol67:4361–4364
    [Google Scholar]
  42. Sambrook J., Russel D. W.. 2001; Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Tusnády G. E., Simon I.. 2001; The hmmtop transmembrane topology prediction server. Bioinformatics17:849–850
    [Google Scholar]
  44. van Pijkeren J. P., Canchaya C., Ryan K. A., Li Y., Claesson M. J., Sheil B., Steidler L., O'Mahony L., Fitzgerald G. F.. & other authors 2006; Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol72:4143–4153
    [Google Scholar]
  45. Volkov A., Liavonchanka A., Kamneva O., Fiedler T., Goebel C., Kreikemeyer B., Feussner I.. 2010; Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence. J Biol Chem285:10353–10361
    [Google Scholar]
  46. Walker D. C., Aoyama K., Klaenhammer T. R.. 1996; Electrotransformation of Lactobacillus acidophilus group A1. FEMS Microbiol Lett138:233–237
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043158-0
Loading
/content/journal/micro/10.1099/mic.0.043158-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error