1887

Abstract

Forty fluorescent strains isolated from white and red cocoyam roots were tested for their ability to synthesize -acyl--homoserine lactones (acyl-HSLs). Remarkably, only isolates from the red cocoyam rhizosphere that were antagonistic against the cocoyam root rot pathogen and synthesized phenazine antibiotics produced acyl-HSLs. This supports the assumption that acyl-HSL production is related to the antagonistic activity of the strains. After detection, the signal molecules were identified through TLC-overlay and liquid chromatography-multiple MS (LC-MS/MS) analysis. In our representative strain, CMR12a, production of the signal molecules could be assigned to two quorum-sensing (QS) systems. The first one is the QS system for phenazine production, PhzI/PhzR, which seemed to be well conserved, since it was genetically organized in the same way as in the well-described phenazine-producing strains 2-79, PCL1391 and 30-84. The newly characterized genes and make up the second QS system of CMR12a, under the control of the uncommon -3-hydroxy-dodecanoyl-homoserine lactone (3-OH-C12-HSL) and with low similarity to other QS systems. No clear function could yet be assigned to the CmrI/CmrR system, although it contributes to the biocontrol capability of CMR12a. Both the PhzI/PhzR and CmrI/CmrR systems are controlled by the GacS/GacA two-component regulatory system.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043125-0
2011-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/459.html?itemId=/content/journal/micro/10.1099/mic.0.043125-0&mimeType=html&fmt=ahah

References

  1. Andersen, J. B., Heydorn, A., Hentzer, M., Eberl, L., Geisenberger, O., Christensen, B. B., Molin, S. & Givskov, M. ( 2001; ). gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67, 575–585.[CrossRef]
    [Google Scholar]
  2. Anjaiah, V., Koedam, N., Nowak-Thompson, B., Loper, J. E., Höfte, M., Tambong, J. T. & Cornelis, P. ( 1998; ). Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11, 847–854.[CrossRef]
    [Google Scholar]
  3. Bertani, I. & Venturi, V. ( 2004; ). Regulation of the N-acyl homoserine lactone-dependent quorum-sensing system in rhizosphere Pseudomonas putida WCS358 and cross-talk with the stationary-phase RpoS sigma factor and the global regulator GacA. Appl Environ Microbiol 70, 5493–5502.[CrossRef]
    [Google Scholar]
  4. Cha, C., Gao, P., Chen, Y. C., Shaw, P. D. & Farrand, S. K. ( 1998; ). Production of acyl-homoserine lactone quorum-sensing signals by Gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11, 1119–1129.[CrossRef]
    [Google Scholar]
  5. Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. & other authors ( 1998; ). Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11, 1069–1077.[CrossRef]
    [Google Scholar]
  6. Chin-A-Woeng, T. F. C., Thomas-Oates, J. E., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2001a; ). Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14, 1006–1015.[CrossRef]
    [Google Scholar]
  7. Chin-A-Woeng, T. F. C., van den Broek, D., de Voer, G., van der Drift, K., Tuinman, S., Thomas-Oates, J. E., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2001b; ). Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant Microbe Interact 14, 969–979.[CrossRef]
    [Google Scholar]
  8. Debode, J., De Maeyer, K., Perneel, M., Pannecoucque, J., De Backer, G. & Höfte, M. ( 2007; ). Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103, 1184–1196.[CrossRef]
    [Google Scholar]
  9. Dietrich, L. E. P., Price-Whelan, A., Petersen, A., Whiteley, M. & Newman, D. K. ( 2006; ). The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61, 1308–1321.[CrossRef]
    [Google Scholar]
  10. Dubern, J. F., Lugtenberg, B. J. J. & Bloemberg, G. V. ( 2006; ). The ppuI-rsaL-ppuR quorum-sensing system regulates biofilm formation of Pseudomonas putida PCL1445 by controlling biosynthesis of the cyclic lipopeptides putisolvins I and II. J Bacteriol 188, 2898–2906.[CrossRef]
    [Google Scholar]
  11. Elasri, M., Delorme, S., Lemanceau, P., Stewart, G., Laue, B., Glickmann, E., Oger, P. M. & Dessaux, Y. ( 2001; ). Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67, 1198–1209.[CrossRef]
    [Google Scholar]
  12. Espinosa-Urgel, M., Salido, A. & Ramos, J. L. ( 2000; ). Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182, 2363–2369.[CrossRef]
    [Google Scholar]
  13. Figurski, D. H. & Helinski, D. R. ( 1979; ). Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A 76, 1648–1652.[CrossRef]
    [Google Scholar]
  14. Fuqua, C., Parsek, M. R. & Greenberg, E. P. ( 2001; ). Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35, 439–468.[CrossRef]
    [Google Scholar]
  15. Heeb, S. & Haas, D. ( 2001; ). Regulatory roles of the GacS/GacA two-component system in plant-associated and other Gram-negative bacteria. Mol Plant Microbe Interact 14, 1351–1363.[CrossRef]
    [Google Scholar]
  16. Hentzer, M., Riedel, K., Rasmussen, T. B., Heydorn, A., Andersen, J. B., Parsek, M. R., Rice, S. A., Eberl, L., Molin, S. & other authors ( 2002; ). Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148, 87–102.
    [Google Scholar]
  17. Hoang, T. T., Karkhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. ( 1998; ). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212, 77–86.[CrossRef]
    [Google Scholar]
  18. Höfte, M., Buysens, S., Koedam, N. & Cornelis, P. ( 1993; ). Zinc affects siderophore-mediated high-affinity iron uptake systems in the rhizosphere Pseudomonas aeruginosa 7NSK2. Biometals 6, 85–91.
    [Google Scholar]
  19. Huang, Z. Y., Bonsall, R. F., Mavrodi, D. V., Weller, D. M. & Thomashow, L. S. ( 2004; ). Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of Rhizoctonia root rot and in situ antibiotic production. FEMS Microbiol Ecol 49, 243–251.[CrossRef]
    [Google Scholar]
  20. Jain, D. K., Collins-Thompson, D. L., Lee, H. & Trevors, J. T. ( 1991; ). A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13, 271–279.[CrossRef]
    [Google Scholar]
  21. Khan, S. R., Mavrodi, D. V., Jog, G. J., Suga, H., Thomashow, L. S. & Farrand, S. K. ( 2005; ). Activation of the phz operon of Pseudomonas fluorescens 2–79 requires the LuxR homolog PhzR, N-(3-OH-hexanoyl)-l-homoserine lactone produced by the LuxI homolog PhzI, and a cis-acting phz box. J Bacteriol 187, 6517–6527.[CrossRef]
    [Google Scholar]
  22. Khan, S. R., Herman, J., Krank, J., Serkova, N. J., Churchill, M. E. A., Suga, H. & Farrand, S. K. ( 2007; ). N-(3-Hydroxyhexanoyl)-l-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30–84. Appl Environ Microbiol 73, 7443–7455.[CrossRef]
    [Google Scholar]
  23. King, E. O., Ward, M. K. & Raney, D. E. ( 1954; ). Two simple media for the demonstration of pyocyanin and fluorescein. J Lab Clin Med 44, 301–307.
    [Google Scholar]
  24. Lemanceau, P., Expert, D., Gaymard, F., Bakker, P. & Briat, J. F. ( 2009; ). Role of iron in plant–microbe interactions. In Plant Innate Immunity, pp. 491–549. Edited by Van Loon, L. C.. San Diego, CA. : Academic Press (Elsevier).
    [Google Scholar]
  25. Li, X. J., Fekete, A., Englmann, M., Gotz, C., Rothballer, M., Frommberger, M., Buddrus, K., Fekete, J., Cai, C. P. & other authors ( 2006; ). Development and application of a method for the analysis of N-acylhomoserine lactones by solid-phase extraction and ultra high pressure liquid chromatography. J Chromatogr A 1134, 186–193.[CrossRef]
    [Google Scholar]
  26. Maddula, V. S., Zhang, Z., Pierson, E. A. & Pierson, L. S. ( 2006; ). Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30-84. Microb Ecol 52, 289–301.[CrossRef]
    [Google Scholar]
  27. Matthijs, S., Baysse, C., Koedam, N., Tehrani, K. A., Verheyden, L., Budzikiewicz, H., Schafer, M., Hoorelbeke, B., Meyer, J. M. & other authors ( 2004; ). The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52, 371–384.[CrossRef]
    [Google Scholar]
  28. Mavrodi, D. V., Ksenzenko, V. N., Bonsall, R. F., Cook, R. J., Boronin, A. M. & Thomashow, L. S. ( 1998; ). A seven-gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2-79. J Bacteriol 180, 2541–2548.
    [Google Scholar]
  29. Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G. & Thomashow, L. S. ( 2001; ). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183, 6454–6465.[CrossRef]
    [Google Scholar]
  30. Mavrodi, D. V., Blankenfeldt, W. & Thomashow, L. S. ( 2006; ). Phenazine compounds in fluorescent Pseudomonas spp. biosynthesis and regulation. Annu Rev Phytopathol 44, 417–445.[CrossRef]
    [Google Scholar]
  31. Mavrodi, D. V., Peever, T. L., Mavrodi, O. V., Parejko, J. A., Raaijmakers, J. M., Lemanceau, P., Mazurier, S., Heide, L., Blankenfeldt, W. & other authors ( 2010; ). Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76, 866–879.[CrossRef]
    [Google Scholar]
  32. Mazzola, M., Cook, R. J., Thomashow, L. S., Weller, D. M. & Pierson, L. S. ( 1992; ). Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitats. Appl Environ Microbiol 58, 2616–2624.
    [Google Scholar]
  33. McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S. & other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  34. Nerey, Y., Pannecoucque, J., Hernandez, H. P., Diaz, M., Espinosa, R., De Vos, S., Van Beneden, S., Herrera, L. & Höfte, M. ( 2010; ). Rhizoctonia spp. causing root and hypocotyl rot in Phaseolus vulgaris in Cuba. J Phytopathol 158, 236–243.[CrossRef]
    [Google Scholar]
  35. Nielsen, T. H., Thrane, C., Christophersen, C., Anthoni, U. & Sorensen, J. ( 2000; ). Structure, production characteristics and fungal antagonism of tensin – a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89, 992–1001.[CrossRef]
    [Google Scholar]
  36. Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglewski, B. H. & Greenberg, E. P. ( 1994; ). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proc Natl Acad Sci U S A 91, 197–201.[CrossRef]
    [Google Scholar]
  37. Perneel, M., Tambong, J. T., Adiobo, A., Floren, C., Saborio, F., Levesque, A. & Höfte, M. ( 2006; ). Intraspecific variability of Pythium myriotylum isolated from cocoyam and other host crops. Mycol Res 110, 583–593.[CrossRef]
    [Google Scholar]
  38. Perneel, M., Heyrman, J., Adiobo, A., De Maeyer, K., Raaijmakers, J. M., De Vos, P. & Höfte, M. ( 2007; ). Characterization of CMR5c and CMR12a, novel fluorescent Pseudomonas strains from the cocoyam rhizosphere with biocontrol activity. J Appl Microbiol 103, 1007–1020.[CrossRef]
    [Google Scholar]
  39. Pesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. ( 1997; ). Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179, 3127–3132.
    [Google Scholar]
  40. Pham, T. H., Boon, N., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Vanhaecke, L., De Maeyer, K., Höfte, M., Verstraete, W. & Rabaey, K. ( 2008; ). Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 77, 1119–1129.[CrossRef]
    [Google Scholar]
  41. Pierson, L. S. & Pierson, E. A. ( 2010; ). Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86, 1659–1670.[CrossRef]
    [Google Scholar]
  42. Pierson, L. S., Wood, D. W. & Pierson, E. A. ( 1998; ). Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36, 207–225.[CrossRef]
    [Google Scholar]
  43. Piper, K. R., Vonbodman, S. B. & Farrand, S. K. ( 1993; ). Conjugation factor of Agrobacterium tumefaciens regulates Ti-plasmid transfer by autoinduction. Nature 362, 448–450.[CrossRef]
    [Google Scholar]
  44. Price-Whelan, A., Dietrich, L. E. & Newman, D. K. ( 2006; ). Rethinking ‘secondary’ metabolism: physiological roles for phenazine antibiotics. Nat Chem Biol 2, 71–78.[CrossRef]
    [Google Scholar]
  45. Price-Whelan, A., Dietrich, L. E. P. & Newman, D. K. ( 2007; ). Pyocyanin alters redox homeostasis and carbon flux through central metabolic pathways in Pseudomonas aeruginosa PA14. J Bacteriol 189, 6372–6381.[CrossRef]
    [Google Scholar]
  46. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  47. Scholten, O. E., Panella, L. W., De Bock, T. S. M. & Lange, W. ( 2001; ). A greenhouse test for screening sugar beet (Beta vulgaris) for resistance to Rhizoctonia solani. Eur J Plant Pathol 107, 161–166.[CrossRef]
    [Google Scholar]
  48. Shanks, R. M. Q., Caiazza, N. C., Hinsa, S. M., Toutain, C. M. & O'Toole, G. A. ( 2006; ). Saccharomyces cerevisiae-based molecular tool kit for manipulation of genes from Gram-negative bacteria. Appl Environ Microbiol 72, 5027–5036.[CrossRef]
    [Google Scholar]
  49. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Rinehart, K. L. & Farrand, S. K. ( 1997; ). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94, 6036–6041.[CrossRef]
    [Google Scholar]
  50. Steindler, L., Bertani, I., De Sordi, L., Bigirimana, J. & Venturi, V. ( 2008; ). The presence, type and role of N-acyl homoserine lactone quorum sensing in fluorescent Pseudomonas originally isolated from rice rhizospheres are unpredictable. FEMS Microbiol Lett 288, 102–111.[CrossRef]
    [Google Scholar]
  51. Stintzi, A., Evans, K., Meyer, J. M. & Poole, K. ( 1998; ). Quorum-sensing and siderophore biosynthesis in Pseudomonas aeruginosa: lasR/lasI mutants exhibit reduced pyoverdine biosynthesis. FEMS Microbiol Lett 166, 341–345.[CrossRef]
    [Google Scholar]
  52. Swift, S., Karlyshev, A. V., Fish, L., Durant, E. L., Winson, M. K., Chhabra, S. R., Williams, P., MacIntyre, S. & Stewart, G. ( 1997; ). Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida: identification of the LuxRI homologs AhyRI and AsaRI and their cognate N-acylhomoserine lactone signal molecules. J Bacteriol 179, 5271–5281.
    [Google Scholar]
  53. Thomashow, L. S. & Weller, D. M. ( 1988; ). Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. J Bacteriol 170, 3499–3508.
    [Google Scholar]
  54. Thomashow, L. S., Weller, D. M., Bonsall, R. F. & Pierson, L. S. ( 1990; ). Production of the antibiotic phenazine-1-carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56, 908–912.
    [Google Scholar]
  55. Thrane, C., Olsson, S., Nielsen, T. H. & Sorensen, J. ( 1999; ). Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30, 11–23.[CrossRef]
    [Google Scholar]
  56. Turner, J. M. & Messenger, A. J. ( 1986; ). Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microb Physiol 27, 211–275.
    [Google Scholar]
  57. Venturi, V. ( 2006; ). Regulation of quorum sensing in Pseudomonas. FEMS Microbiol Rev 30, 274–291.[CrossRef]
    [Google Scholar]
  58. Wei, H. L. & Zhang, L. Q. ( 2006; ). Quorum-sensing system influences root colonization and biological control ability in Pseudomonas fluorescens 2P24. Antonie van Leeuwenhoek 89, 267–280.[CrossRef]
    [Google Scholar]
  59. Whiteley, M. & Greenberg, E. P. ( 2001; ). Promoter specificity elements in Pseudomonas aeruginosa quorum-sensing-controlled genes. J Bacteriol 183, 5529–5534.[CrossRef]
    [Google Scholar]
  60. Wood, D. W. & Pierson, L. S. ( 1996; ). The phzI gene of Pseudomonas aureofaciens 30–84 is responsible for the production of a diffusible signal required for phenazine antibiotic production. Gene 168, 49–53.[CrossRef]
    [Google Scholar]
  61. Zhang, Z. G. & Pierson, L. S. ( 2001; ). A second quorum-sensing system regulates cell surface properties but not phenazine antibiotic production in Pseudomonas aureofaciens. Appl Environ Microbiol 67, 4305–4315.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043125-0
Loading
/content/journal/micro/10.1099/mic.0.043125-0
Loading

Data & Media loading...

Supplements

[PDF](37 KB)

PDF

Acyl-HSL profiles of CMR12a and its quorum-sensing mutants [PDF](62 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error