1887

Abstract

The replacement of the bladder with a neobladder made from ileal tissue is the prescribed treatment in some cases of bladder cancer or trauma. Studies have demonstrated that individuals with an ileal neobladder have recurrent colonization by and other species that are commonly associated with urinary tract infections; however, pyelonephritis and complicated symptomatic infections with ileal neobladders are relatively rare. This study examines the genomic content of two isolates from individuals with neobladders using comparative genomic hybridization (CGH) with a pan-/ microarray. Comparisons of the neobladder genome hybridization patterns with reference genomes demonstrate that the neobladder isolates are more similar to the commensal, laboratory-adapted and a subset of enteroaggregative than they are to uropathogenic isolates. Genes identified by CGH as exclusively present in the neobladder isolates among the 30 examined isolates were primarily from large enteric isolate plasmids. Isolations identified a large plasmid in each isolate, and sequencing confirmed similarity to previously identified plasmids of enteric species. Screening, via PCR, of more than 100 isolates of from environmental, diarrhoeagenic and urinary tract sources did not identify neobladder-specific genes that were widely distributed in these populations. These results taken together demonstrate that the neobladder isolates, while distinct, are genomically more similar to gastrointestinal or commensal , suggesting why they can colonize the transplanted intestinal tissue but rarely progress to acute pyelonephritis or more severe disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043018-0
2011-04-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/4/1088.html?itemId=/content/journal/micro/10.1099/mic.0.043018-0&mimeType=html&fmt=ahah

References

  1. Åkerlund, S., Campanello, M., Kaijser, B. & Jonsson, O. ( 1994; ). Bacteriuria in patients with a continent ileal reservoir for urinary diversion does not regularly require antibiotic treatment. Br J Urol 74, 177–181.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Angiuoli, S. V. & Salzberg, S. L. ( 2011; ). Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics 27, 334–342.[CrossRef]
    [Google Scholar]
  4. Blattner, F. R., Plunkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.[CrossRef]
    [Google Scholar]
  5. Chen, S. L., Hung, C. S., Xu, J., Reigstad, C. S., Magrini, V., Sabo, A., Blasiar, D., Bieri, T., Meyer, R. R. & other authors ( 2006; ). Identification of genes subject to positive selection in uropathogenic strains of Escherichia coli: a comparative genomics approach. Proc Natl Acad Sci U S A 103, 5977–5982.[CrossRef]
    [Google Scholar]
  6. Chen, S. L., Hung, C. S., Pinkner, J. S., Walker, J. N., Cusumano, C. K., Li, Z., Bouckaert, J., Gordon, J. I. & Hultgren, S. J. ( 2009; ). Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci U S A 106, 22439–22444.[CrossRef]
    [Google Scholar]
  7. Czeczulin, J. R., Whittam, T. S., Henderson, I. R., Navarro-Garcia, F. & Nataro, J. P. ( 1999; ). Phylogenetic analysis of enteroaggregative and diffusely adherent Escherichia coli. Infect Immun 67, 2692–2699.
    [Google Scholar]
  8. Davidsson, T., Wullt, B., Könyves, J., Månsson, A. & Månsson, W. ( 2000; ). Urinary diversion and bladder substitution in patients with bladder cancer. Urol Oncol 5, 224–231.[CrossRef]
    [Google Scholar]
  9. Delcher, A. L., Phillippy, A., Carlton, J. & Salzberg, S. L. ( 2002; ). Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res 30, 2478–2483.[CrossRef]
    [Google Scholar]
  10. Delcher, A. L., Salzberg, S. L. & Phillippy, A. M. ( 2003; ). Using MUMmer to identify similar regions in large sequence sets. Curr Protoc Bioinformatics Chapter 10, 10.3.
    [Google Scholar]
  11. Donnenberg, M. S. & Whittam, T. S. ( 2001; ). Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J Clin Invest 107, 539–548.[CrossRef]
    [Google Scholar]
  12. Falagas, M. E. & Vergidis, P. I. ( 2005; ). Urinary tract infections in patients with urinary diversion. Am J Kidney Dis 46, 1030–1037.[CrossRef]
    [Google Scholar]
  13. Fang, H., Xu, J., Ding, D., Jackson, S. A., Patel, I. R., Frye, J. G., Zou, W., Nayak, R., Foley, S. & other authors ( 2010; ). An FDA bioinformatics tool for microbial genomics research on molecular characterization of bacterial foodborne pathogens using microarrays. BMC Bioinformatics 11 (Suppl 6), S4.
    [Google Scholar]
  14. Froehlich, B., Parkhill, J., Sanders, M., Quail, M. A. & Scott, J. R. ( 2005; ). The pCoo plasmid of enterotoxigenic Escherichia coli is a mosaic cointegrate. J Bacteriol 187, 6509–6516.[CrossRef]
    [Google Scholar]
  15. Fukiya, S., Mizoguchi, H., Tobe, T. & Mori, H. ( 2004; ). Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J Bacteriol 186, 3911–3921.[CrossRef]
    [Google Scholar]
  16. Ge, Z. & Taylor, D. E. ( 1992; ). H. pylori DNA transformation by natural competence and electroporation. In Helicobacter pylori Protocols, pp. 145–152. Edited by Clayton, C. L. & Mobley, H. L. T.. Totowa. : Humana Press.
    [Google Scholar]
  17. Hale, T. L., Guerry, P., Seid, R. C., Jr, Kapfer, C., Wingfield, M. E., Reaves, C. B., Baron, L. S. & Formal, S. B. ( 1984; ). Expression of lipopolysaccharide O antigen in Escherichia coli K-12 hybrids containing plasmid and chromosomal genes from Shigella dysenteriae 1. Infect Immun 46, 470–475.
    [Google Scholar]
  18. Hayashi, T., Makino, K., Ohnishi, M., Kurokawa, K., Ishii, K., Yokoyama, K., Han, C. G., Ohtsubo, E., Nakayama, K. & other authors ( 2001; ). Complete genome sequence of enterohemorrhagic Escherichia coli O157 : H7 and genomic comparison with a laboratory strain K-12. DNA Res 8, 11–22.[CrossRef]
    [Google Scholar]
  19. Hochhut, B., Wilde, C., Balling, G., Middendorf, B., Dobrindt, U., Brzuszkiewicz, E., Gottschalk, G., Carniel, E. & Hacker, J. ( 2006; ). Role of pathogenicity island-associated integrases in the genome plasticity of uropathogenic Escherichia coli strain 536. Mol Microbiol 61, 584–595.[CrossRef]
    [Google Scholar]
  20. Hubbell, E., Liu, W. M. & Mei, R. ( 2002; ). Robust estimators for expression analysis. Bioinformatics 18, 1585–1592.[CrossRef]
    [Google Scholar]
  21. Iwakiri, J. & Freiha, F. ( 1993; ). Stanford pouch ileal neobladder: clinical, radiologic, and urodynamic follow-up. Urology 41, 517–522.[CrossRef]
    [Google Scholar]
  22. Iwakiri, J., Gill, H., Anderson, R. & Freiha, F. ( 1993; ). Functional and urodynamic characteristics of an ileal neobladder. J Urol 149, 1072–1076.
    [Google Scholar]
  23. Iwakiri, J., Freiha, F. S. & Shortliffe, L. M. ( 2002; ). Prospective study of urinary tract infections and urinary antibodies after radical prostatectomy and cystoprostatectomy. Urol Clin North Am 29, 251–258, xii.[CrossRef]
    [Google Scholar]
  24. Johnson, T. J. & Nolan, L. K. ( 2009; ). Pathogenomics of the virulence plasmids of Escherichia coli. Microbiol Mol Biol Rev 73, 750–774.[CrossRef]
    [Google Scholar]
  25. Johnson, T. J., Kariyawasam, S., Wannemuehler, Y., Mangiamele, P., Johnson, S. J., Doetkott, C., Skyberg, J. A., Lynne, A. M., Johnson, J. R. & Nolan, L. K. ( 2007; ). The genome sequence of avian pathogenic Escherichia coli strain O1 : K1 : H7 shares strong similarities with human extraintestinal pathogenic E. coli genomes. J Bacteriol 189, 3228–3236.[CrossRef]
    [Google Scholar]
  26. Keegan, S. J., Hormaeche, C. E., Pearson, J. P. & Gally, D. L. ( 2000; ). Characterisation and adherence mechanisms of Escherichia coli strains causing infections in patients with a reconstructed bladder. Adv Exp Med Biol 485, 263–271.
    [Google Scholar]
  27. Keegan, S. J., Graham, C., Neal, D. E., Blum-Oehler, G., N'Dow, J., Pearson, J. P. & Gally, D. L. ( 2003; ). Characterization of Escherichia coli strains causing urinary tract infections in patients with transposed intestinal segments. J Urol 169, 2382–2387.[CrossRef]
    [Google Scholar]
  28. Kim, S. R. & Komano, T. ( 1997; ). The plasmid R64 thin pilus identified as a type IV pilus. J Bacteriol 179, 3594–3603.
    [Google Scholar]
  29. Kristjánsson, A., Bajc, M., Wallin, L., Willner, J. & Månsson, W. ( 1995a; ). Renal function up to 16 years after conduit (refluxing or anti-reflux anastomosis) or continent urinary diversion. 2. Renal scarring and location of bacteriuria. Br J Urol 76, 546–550.[CrossRef]
    [Google Scholar]
  30. Kristjánsson, A., Wallin, L. & Månsson, W. ( 1995b; ). Renal function up to 16 years after conduit (refluxing or anti-reflux anastomosis) or continent urinary diversion. 1. Glomerular filtration rate and patency of uretero-intestinal anastomosis. Br J Urol 76, 539–545.[CrossRef]
    [Google Scholar]
  31. Kurtz, S., Phillippy, A., Delcher, A. L., Smoot, M., Shumway, M., Antonescu, C. & Salzberg, S. L. ( 2004; ). Versatile and open software for comparing large genomes. Genome Biol 5, R12.[CrossRef]
    [Google Scholar]
  32. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  33. Liu, W. M., Mei, R., Di, X., Ryder, T. B., Hubbell, E., Dee, S., Webster, T. A., Harrington, C. A., Ho, M. H. & other authors ( 2002; ). Analysis of high density expression microarrays with signed-rank call algorithms. Bioinformatics 18, 1593–1599.[CrossRef]
    [Google Scholar]
  34. Lloyd, A. L., Rasko, D. A. & Mobley, H. L. ( 2007; ). Defining genomic islands and uropathogen-specific genes in uropathogenic Escherichia coli. J Bacteriol 189, 3532–3546.[CrossRef]
    [Google Scholar]
  35. Lloyd, A. L., Henderson, T. A., Vigil, P. D. & Mobley, H. L. ( 2009; ). Genomic islands of uropathogenic Escherichia coli contribute to virulence. J Bacteriol 191, 3469–3481.[CrossRef]
    [Google Scholar]
  36. Mobley, H. L., Green, D. M., Trifillis, A. L., Johnson, D. E., Chippendale, G. R., Lockatell, C. V., Jones, B. D. & Warren, J. W. ( 1990; ). Pyelonephritogenic Escherichia coli and killing of cultured human renal proximal tubular epithelial cells: role of hemolysin in some strains. Infect Immun 58, 1281–1289.
    [Google Scholar]
  37. Nataro, J. P., Deng, Y., Cookson, S., Cravioto, A., Savarino, S. J., Guers, L. D., Levine, M. M. & Tacket, C. O. ( 1995; ). Heterogeneity of enteroaggregative Escherichia coli virulence demonstrated in volunteers. J Infect Dis 171, 465–468.[CrossRef]
    [Google Scholar]
  38. Nie, H., Yang, F., Zhang, X., Yang, J., Chen, L., Wang, J., Xiong, Z., Peng, J., Sun, L. & other authors ( 2006; ). Complete genome sequence of Shigella flexneri 5b and comparison with Shigella flexneri 2a. BMC Genomics 7, 173.[CrossRef]
    [Google Scholar]
  39. Perna, N. T., Plunkett, G., III, Burland, V., Mau, B., Glasner, J. D., Rose, D. J., Mayhew, G. F., Evans, P. S., Gregor, J. & other authors ( 2001; ). Genome sequence of enterohaemorrhagic Escherichia coli O157 : H7. Nature 409, 529–533.[CrossRef]
    [Google Scholar]
  40. Rasko, D. A., Rosovitz, M. J., Myers, G. S., Mongodin, E. F., Fricke, W. F., Gajer, P., Crabtree, J., Sebaihia, M., Thomson, N. R. & other authors ( 2008; ). The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190, 6881–6893.[CrossRef]
    [Google Scholar]
  41. Schlager, T. A., Whittam, T. S., Hendley, J. O., Wilson, R. A., Bhang, J., Grady, R. & Stapleton, A. ( 2000; ). Expression of virulence factors among Escherichia coli isolated from the periurethra and urine of children with neurogenic bladder on intermittent catheterization. Pediatr Infect Dis J 19, 37–41.[CrossRef]
    [Google Scholar]
  42. Schlager, T. A., Johnson, J. R., Ouellette, L. M. & Whittam, T. S. ( 2008; ). Escherichia coli colonizing the neurogenic bladder are similar to widespread clones causing disease in patients with normal bladder function. Spinal Cord 46, 633–638.[CrossRef]
    [Google Scholar]
  43. Shaaban, A. A., el-Nono, I. H., Abdel-Rahman, M. & Ghoneim, M. A. ( 1992a; ). The urodynamic characteristics of different ileal reservoirs: an experimental study in dogs. J Urol 147, 197–200.
    [Google Scholar]
  44. Shaaban, A. A., Gaballah, M. A., el-Diasty, T. A. & Ghoneim, M. A. ( 1992b; ). Urethral controlled bladder substitution: a comparison between the intussuscepted nipple valve and the technique of Le Duc as antireflux procedures. J Urol 148, 1156–1161.
    [Google Scholar]
  45. Skyberg, J. A., Johnson, T. J., Johnson, J. R., Clabots, C., Logue, C. M. & Nolan, L. K. ( 2006; ). Acquisition of avian pathogenic Escherichia coli plasmids by a commensal E. coli isolate enhances its abilities to kill chicken embryos, grow in human urine, and colonize the murine kidney. Infect Immun 74, 6287–6292.[CrossRef]
    [Google Scholar]
  46. Studer, U. E., Casanova, G. A. & Zingg, E. J. ( 1991; ). Continent urinary diversion by an ileal bladder substitute. Prog Clin Biol Res 370, 59–66.
    [Google Scholar]
  47. Studer, U. E., Danuser, H., Hochreiter, W., Springer, J. P., Turner, W. H. & Zingg, E. J. ( 1996; ). Summary of 10 years' experience with an ileal low-pressure bladder substitute combined with an afferent tubular isoperistaltic segment. World J Urol 14, 29–39.[CrossRef]
    [Google Scholar]
  48. Suriano, F., Gallucci, M., Flammia, G. P., Musco, S., Alcini, A., Imbalzano, G. & Dicuonzo, G. ( 2008; ). Bacteriuria in patients with an orthotopic ileal neobladder: urinary tract infection or asymptomatic bacteriuria? BJU Int 101, 1576–1579.[CrossRef]
    [Google Scholar]
  49. Tettelin, H., Riley, D., Cattuto, C. & Medini, D. ( 2008; ). Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11, 472–477.[CrossRef]
    [Google Scholar]
  50. Touchon, M., Hoede, C., Tenaillon, O., Barbe, V., Baeriswyl, S., Bidet, P., Bingen, E., Bonacorsi, S., Bouchier, C. & other authors ( 2009; ). Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5, e1000344.[CrossRef]
    [Google Scholar]
  51. Valentiner-Branth, P., Steinsland, H., Fischer, T. K., Perch, M., Scheutz, F., Dias, F., Aaby, P., Mølbak, K. & Sommerfelt, H. ( 2003; ). Cohort study of Guinean children: incidence, pathogenicity, conferred protection, and attributable risk for enteropathogens during the first 2 years of life. J Clin Microbiol 41, 4238–4245.[CrossRef]
    [Google Scholar]
  52. Wei, J., Goldberg, M. B., Burland, V., Venkatesan, M. M., Deng, W., Fournier, G., Mayhew, G. F., Plunkett, G., III, Rose, D. J. & other authors ( 2003; ). Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect Immun 71, 2775–2786.[CrossRef]
    [Google Scholar]
  53. Welch, R. A., Burland, V., Plunkett, G., III, Redford, P., Roesch, P., Rasko, D., Buckles, E. L., Liou, S. R., Boutin, A. & other authors ( 2002; ). Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci U S A 99, 17020–17024.[CrossRef]
    [Google Scholar]
  54. Whittam, T. S., Ochman, H. & Selander, R. K. ( 1983; ). Geographic components of linkage disequilibrium in natural populations of Escherichia coli. Mol Biol Evol 1, 67–83.
    [Google Scholar]
  55. Whittam, T. S., Wolfe, M. L., Wachsmuth, I. K., Orskov, F., Orskov, I. & Wilson, R. A. ( 1993; ). Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect Immun 61, 1619–1629.
    [Google Scholar]
  56. Wullt, B., Agace, W. & Mansson, W. ( 2004; ). Bladder, bowel and bugs –bacteriuria in patients with intestinal urinary diversion. World J Urol 22, 186–195.[CrossRef]
    [Google Scholar]
  57. Zerbino, D. R. & Birney, E. ( 2008; ). Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18, 821–829.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043018-0
Loading
/content/journal/micro/10.1099/mic.0.043018-0
Loading

Data & Media loading...

Supplements

[ Excel file] (126 kb): Origin and primer sequence used for collection screening Comparative genomic hybridization of known virulence factors of UPEC isolates List of gene features used for UPEC virulence analysis Genes shared by UPEC isolates only Genes shared by neobladder and non-UPEC isolates PCR-based screening of neobladder-specific genes in collections of environmental, diarrhoeagenic and uropathogenic [ PDF] (334 kb)

EXCEL

[ Excel file] (126 kb): Origin and primer sequence used for collection screening Comparative genomic hybridization of known virulence factors of UPEC isolates List of gene features used for UPEC virulence analysis Genes shared by UPEC isolates only Genes shared by neobladder and non-UPEC isolates PCR-based screening of neobladder-specific genes in collections of environmental, diarrhoeagenic and uropathogenic [ PDF] (334 kb)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error