1887

Abstract

Bacterial cytochrome maturation occurs at the outside of the cytoplasmic membrane, requires transport of haem across the membrane, and depends on membrane-bound cytochrome haem lyase (CCHL), an enzyme that catalyses covalent attachment of haem to apocytochrome . Epsilonproteobacteria such as use the cytochrome biogenesis system II and contain unusually large CCHL proteins of about 900 amino acid residues that appear to be fusions of the CcsB and CcsA proteins found in other bacteria. CcsBA-type CCHLs have been proposed to act as haem transporters that contain two haem coordination sites located at different sides of the membrane and formed by histidine pairs. cells contain three CcsBA-type CCHL isoenzymes (NrfI, CcsA1 and CcsA2) that are known to differ in their specificity for apocytochromes and apparently recognize different haem binding motifs such as CXCH (by CcsA2), CXCK (by NrfI) and CXCH (by CcsA1). In this study, conserved histidine residues were individually replaced by alanine in each of the CCHLs. Characterization of NrfI and CcsA1 variants in demonstrated that a set of four histidines is essential for maturing the dedicated multihaem cytochromes NrfA and MccA, respectively. The function of CcsA2 variants produced in was also found to depend on each of these four conserved histidine residues. The presence of imidazole in the growth medium of both and rescued the cytochrome biogenesis activity of most histidine variants, albeit to different extents, thereby implying the presence of two functionally distinct histidine pairs in each CCHL. The data support a model in which two conserved haem binding sites are involved in haem transport catalysed by CcsBA-type CCHLs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042838-0
2010-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3773.html?itemId=/content/journal/micro/10.1099/mic.0.042838-0&mimeType=html&fmt=ahah

References

  1. Ahuja U., Kjelgaard P., Schulz B. L., Thöny-Meyer L., Hederstedt L. 2009; Haem-delivery proteins in cytochrome c maturation system II. Mol Microbiol 73:1058–1071
    [Google Scholar]
  2. Barrick D. 1994; Replacement of the proximal ligand of sperm whale myoglobin with free imidazole in the mutant His-93→Gly. Biochemistry 33:6546–6554
    [Google Scholar]
  3. Bode C., Goebell H., Stähler E. 1968; Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:418–422
    [Google Scholar]
  4. Dreyfuss B. W., Hamel P. P., Nakamoto S. S., Merchant S. 2003; Functional analysis of a divergent system II protein, Ccs1, involved in c -type cytochrome biogenesis. J Biol Chem 278:2604–2613
    [Google Scholar]
  5. Feissner R. E., Richard-Fogal C. L., Frawley E. R., Loughman J. A., Earley K. W., Kranz R. G. 2006; Recombinant cytochromes c biogenesis systems I and II and analysis of haem delivery pathways in Escherichia coli . Mol Microbiol 60:563–577
    [Google Scholar]
  6. Ferguson S. J., Stevens J. M., Allen J. W. A., Robertson I. B. 2008; Cytochrome c assembly: a tale of ever increasing variation and mystery?. Biochim Biophys Acta 1777980–984
    [Google Scholar]
  7. Frawley E. R., Kranz R. G. 2009; CcsBA is a cytochrome c synthetase that also functions in heme transport. Proc Natl Acad Sci U S A 106:10201–10206
    [Google Scholar]
  8. Goddard A. D., Stevens J. M., Rondelet A., Nomerotskaia E., Allen J. W. A., Ferguson S. J. 2010; Comparing the substrate specificities of cytochrome c biogenesis systems I and II: bioenergetics. FEBS J 277:726–737
    [Google Scholar]
  9. Hamel P. P., Dreyfuss B. W., Xie Z., Gabilly S. T., Merchant S. 2003; Essential histidine and tryptophan residues in CcsA, a system II polytopic cytochrome c biogenesis protein. J Biol Chem 278:2593–2603
    [Google Scholar]
  10. Hartshorne S., Richardson D. J., Simon J. 2006; Multiple haem lyase genes indicate substrate specificity in cytochrome c biogenesis. Biochem Soc Trans 34:146–149
    [Google Scholar]
  11. Hartshorne R. S., Kern M., Meyer B., Clarke T. A., Karas M., Richardson D. J., Simon J. 2007; A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding. Mol Microbiol 64:1049–1060
    [Google Scholar]
  12. Kern M., Simon J. 2008; Characterization of the NapGH quinol dehydrogenase complex involved in Wolinella succinogenes nitrate respiration. Mol Microbiol 69:1137–1152
    [Google Scholar]
  13. Kern M., Simon J. 2009a; Electron transport chains and bioenergetics of respiratory nitrogen metabolism in Wolinella succinogenes and other Epsilonproteobacteria. Biochim Biophys Acta 1787646–656
    [Google Scholar]
  14. Kern M., Simon J. 2009b; Periplasmic nitrate reduction in Wolinella succinogenes : cytoplasmic NapF facilitates NapA maturation and requires the menaquinol dehydrogenase NapH for membrane attachment. Microbiology 155:2784–2794
    [Google Scholar]
  15. Kern M., Mager A. M., Simon J. 2007; Role of individual nap gene cluster products in NapC-independent nitrate respiration of Wolinella succinogenes . Microbiology 153:3739–3747
    [Google Scholar]
  16. Kern M., Eisel F., Scheithauer J., Kranz R. G., Simon J. 2010; Substrate specificity of three cytochrome c haem lyase isoenzymes from Wolinella succinogenes : unconventional haem c binding motifs are not sufficient for haem c attachment by NrfI and CcsA1. Mol Microbiol 75:122–137
    [Google Scholar]
  17. Kranz R. G., Richard-Fogal C., Taylor J.-S., Frawley E. R. 2009; Cytochrome c biogenesis: mechanisms for covalent modifications and trafficking of heme and for heme-iron redox control. Microbiol Mol Biol Rev 73:510–528
    [Google Scholar]
  18. Kröger A., Geisler V., Duchêne A. 1994; Isolation of Wolinella succinogenes hydrogenase, chromatofocusing. In A Practical Guide to Membrane Protein Purification pp 141–147 Edited by von Jagow G., Schägger H. London: Academic Press;
    [Google Scholar]
  19. Merchant S. S. 2009; His protects heme as it crosses the membrane. Proc Natl Acad Sci U S A 106:10069–10070
    [Google Scholar]
  20. Pisa R., Stein T., Eichler R., Gross R., Simon J. 2002; The nrfI gene is essential for the attachment of the active site haem group of Wolinella succinogenes cytochrome c nitrite reductase. Mol Microbiol 43:763–770
    [Google Scholar]
  21. Ren Q., Ahuja U., Thöny-Meyer L. 2002; A bacterial cytochrome c heme lyase. CcmF forms a complex with the heme chaperone CcmE and CcmH but not with apocytochrome c . J Biol Chem 277:7657–7663
    [Google Scholar]
  22. Richard-Fogal C. L., Kranz R. G. 2010; The CcmC : heme : CcmE complex in heme trafficking and cytochrome c biosynthesis. J Mol Biol 401:350–362
    [Google Scholar]
  23. Richard-Fogal C. L., Frawley E. R., Feissner R. E., Kranz R. G. 2007; Heme concentration dependence and metalloprotein inhibition of the system I and II cytochrome c assembly pathways. J Bacteriol 189:455–463
    [Google Scholar]
  24. Richard-Fogal C. L., Bonner E. R., Zhu H., San Francisco B., Kranz R. G. 2009; A conserved haem redox and trafficking pathway for cofactor attachment. EMBO J 28:2349–2359
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  26. Sanders C., Turkarslan S., Lee D.-W., Daldal F. 2010; Cytochrome c biogenesis: the Ccm system. Trends Microbiol 18:266–274
    [Google Scholar]
  27. Schulz H., Pellicioli E. C., Thöny-Meyer L. 2000; New insights into the role of CcmC, CcmD and CcmE in the haem delivery pathway during cytochrome c maturation by a complete mutational analysis of the conserved tryptophan-rich motif of CcmC. Mol Microbiol 37:1379–1388
    [Google Scholar]
  28. Simon J. 2002; Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309
    [Google Scholar]
  29. Simon J., Kern M. 2008; Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial anaerobic respiration. Biochem Soc Trans 36:1011–1016
    [Google Scholar]
  30. Simon J., Gross R., Ringel M., Schmidt E., Kröger A. 1998; Deletion and site-directed mutagenesis of the Wolinella succinogenes fumarate reductase operon. Eur J Biochem 251:418–426
    [Google Scholar]
  31. Simon J., Gross R., Einsle O., Kroneck P. M. H., Kröger A., Klimmek O. 2000; A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes . Mol Microbiol 35:686–696
    [Google Scholar]
  32. Simon J., Pisa R., Stein T., Eichler R., Klimmek O., Gross R. 2001; The tetraheme cytochrome c NrfH is required to anchor the cytochrome c nitrite reductase (NrfA) in the membrane of Wolinella succinogenes . Eur J Biochem 268:5776–5782
    [Google Scholar]
  33. Simon J., van Spanning R. J. M., Richardson D. J. 2008; The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim Biophys Acta 17771480–1490
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042838-0
Loading
/content/journal/micro/10.1099/mic.0.042838-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error