Replication of plasmids derived from Shiga toxin-converting bacteriophages in starved Free

Abstract

The pathogenicity of Shiga toxin-producing (STEC) depends on the expression of genes that are located on lambdoid prophages. Effective toxin production occurs only after prophage induction, and one may presume that replication of the phage genome is important for an increase in the dosage of genes, positively influencing their expression. We investigated the replication of plasmids derived from Shiga toxin (Stx)-converting bacteriophages in starved cells, as starvation conditions may be common in the intestine of infected humans. We found that, unlike plasmids derived from bacteriophage , the Shiga toxin phage-derived replicons did not replicate in amino acid-starved and cells (showing the stringent and relaxed responses to starvation, respectively). The presence of the stable fraction of the replication initiator O protein was detected in all tested replicons. However, while ppGpp, the stringent response effector, inhibited the activities of the promoter and its homologues from Shiga toxin-converting bacteriophages, these promoters, except for , were only weakly stimulated by the DksA protein. We suggest that this less efficient (relative to ) positive regulation of transcription responsible for transcriptional activation of the contributes to the inhibition of DNA replication initiation of Shiga toxin-converting bacteriophages in starved host cells, even in the absence of ppGpp (as in starved hosts). Possible clinical implications of these results are discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042820-0
2011-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/220.html?itemId=/content/journal/micro/10.1099/mic.0.042820-0&mimeType=html&fmt=ahah

References

  1. Besser R. E., Griffin P. M., Slutsker L. 1999; Escherichia coli O157 : H7 gastroenteritis and the hemolytic uremic syndrome: an emerging infectious disease. Annu Rev Med 50:355–367
    [Google Scholar]
  2. Boyd A. C., Sherratt D. J. 1995; The pCLIP plasmids: versatile cloning vectors based on the bacteriophage λ origin of replication. Gene 153:57–62
    [Google Scholar]
  3. Brown K. H. 1994; Dietary management of acute diarrheal disease: contemporary scientific issues. J Nutr 124:1455S–1460S
    [Google Scholar]
  4. Elliott T., Geiduschek E. P. 1984; Defining a bacteriophage T4 late promoter: absence of a “−35” region. Cell 36:211–219
    [Google Scholar]
  5. Gamage S. D., Patton A. K., Hanson J. F., Weiss A. A. 2004; Diversity and host range of Shiga toxin-encoding phage. Infect Immun 72:7131–7139
    [Google Scholar]
  6. Grimwood K., Forbes D. A. 2009; Acute and persistent diarrhea. Pediatr Clin North Am 56:1343–1361
    [Google Scholar]
  7. Gyles C. L. 2007; Shiga toxin-producing Escherichia coli : an overview. J Anim Sci 85:E45–E62
    [Google Scholar]
  8. Herman A., Węgrzyn A., Węgrzyn G. 1994; Differential replication of plasmids during stringent and relaxed response of Escherichia coli . Plasmid 32:89–94
    [Google Scholar]
  9. Herold S., Karch H., Schmidt H. 2004; Shiga toxin-encoding bacteriophages – genomes in motion. Int J Med Microbiol 294:115–121
    [Google Scholar]
  10. Jasiecki J., Węgrzyn G. 2003; Growth-rate dependent RNA polyadenylation in Escherichia coli . EMBO Rep 4:172–177
    [Google Scholar]
  11. Kimmitt P. T., Harwood C. R., Barer M. R. 2000; Toxin gene expression by Shiga toxin-producing Escherichia coli : the role of antibiotics and the bacterial SOS response. Emerg Infect Dis 6:458–465
    [Google Scholar]
  12. Koletzko S., Osterrieder S. 2009; Acute infectious diarrhea in children. Dtsch Arztebl Int 106:539–547
    [Google Scholar]
  13. Konieczny I., Marszałek J. 1995; The requirement for molecular chaperones in λ DNA replication is reduced by the mutation π in λ P gene, which weakens the interaction between λ P protein and DnaB helicase. J Biol Chem 270:9792–9799
    [Google Scholar]
  14. Łoś M., Golec P., Łoś J. M., Węglewska-Jurkiewicz A., Czyż A., Węgrzyn A., Węgrzyn G., Neubauer P. 2007; Effective inhibition of lytic development of bacteriophages λ , P1 and T4 by starvation of their host, Escherichia coli . BMC Biotechnol 7:13
    [Google Scholar]
  15. Łoś J. M., Łoś M., Węgrzyn G., Węgrzyn A. 2009; Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. Microb Pathog 47:289–298
    [Google Scholar]
  16. Łoś J. M., Łoś M., Węgrzyn A., Węgrzyn G. 2010; Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157 : H7. FEMS Immunol Med Microbiol 58:322–329
    [Google Scholar]
  17. Łyżeń R., Kochanowska M., Węgrzyn G., Szalewska-Pałasz A. 2009; Transcription from bacteriophage λ P R promoter is regulated independently and antagonistically by DksA and ppGpp. Nucleic Acids Res 37:6655–6664
    [Google Scholar]
  18. Matsushiro A., Sato K., Miyamoto H., Yamamura T., Honda T. 1999; Induction of prophages of enterohemorrhagic Escherichia coli O157 : H7 with norfloxacin. J Bacteriol 181:2257–2260
    [Google Scholar]
  19. McBurney M. I., Van Soest P. J., Jeraci J. L. 1987; Colonic carcinogenesis: the microbial feast or famine mechanism. Nutr Cancer 10:23–28
    [Google Scholar]
  20. Nataro J. P., Kaper J. B. 1998; Diarrheagenic Escherichia coli . Clin Microbiol Rev 11:142–201
    [Google Scholar]
  21. Nejman B., Łoś J. M., Łoś M., Węgrzyn G., Węgrzyn A. 2009; Plasmids derived from lambdoid bacteriophages as models for studying replication of mobile genetic elements responsible for the production of Shiga toxins by pathogenic Escherichia coli strains. J Mol Microbiol Biotechnol 17:211–220
    [Google Scholar]
  22. Potrykus K., Cashel M. 2008; (p)ppGpp: still magical?. Annu Rev Microbiol 62:35–51
    [Google Scholar]
  23. Potrykus K., Barańska S., Węgrzyn A., Węgrzyn G. 2002; Composition of the lambda plasmid heritable replication complex. Biochem J 364:857–862
    [Google Scholar]
  24. Ptashne M. 2004 A Genetic Switch: Phage Lambda Revisited, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Roediger W. E. 1990; The starved colon – diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 33:858–862
    [Google Scholar]
  26. Roediger W. E. 1994; Famine, fiber, fatty acids, and failed colonic absorption: does fiber fermentation ameliorate diarrhea?. JPEN J Parenter Enteral Nutr 18:4–8
    [Google Scholar]
  27. Sambrook J., Russell D. W. 2001 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Scheline R. R. 1973; Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 25:451–523
    [Google Scholar]
  30. Schmidt H. 2001; Shiga-toxin-converting bacteriophages. Res Microbiol 152:687–695
    [Google Scholar]
  31. Serna A., Boedeker E. C. 2008; Pathogenesis and treatment of Shiga toxin-producing Escherichia coli infections. Curr Opin Gastroenterol 24:38–47
    [Google Scholar]
  32. Szalewska-Pałasz A. 2008; Properties of Escherichia coli RNA polymerase from a strain devoid of the stringent response alarmone ppGpp. Acta Biochim Pol 55:317–323
    [Google Scholar]
  33. Szalewska-Pałasz A., Węgrzyn A., Herman A., Węgrzyn G. 1994; The mechanism of the stringent control of λ plasmid DNA replication. EMBO J 13:5779–5785
    [Google Scholar]
  34. Szalewska-Pałasz A., Węgrzyn A., Błaszczak A., Taylkor K., Węgrzyn G. 1998; DnaA-stimulated transcriptional activation of oriλ : Escherichia coli RNA polymerase β subunit as a transcriptional activator contact site. Proc Natl Acad Sci U S A 95:4241–4246
    [Google Scholar]
  35. Szalewska-Pałasz A., Węgrzyn G., Węgrzyn A. 2007; Mechanisms of physiological regulation of RNA synthesis in bacteria: new discoveries breaking old schemes. J Appl Genet 48:281–294
    [Google Scholar]
  36. Szambowska A., Pierechod M., Węgrzyn G., Glinkowska M. 2010; Coupling of transcription and replication machineries in λ DNA replication initiation: evidence for direct interaction of Escherichia coli RNA polymerase and the λ O protein. Nucleic Acids Res Sep 9 (in press). doi: 10.1093/nar/gkq752
    [Google Scholar]
  37. Taylor K., Węgrzyn G. 1995; Replication of coliphage λ DNA. FEMS Microbiol Rev 17:109–119
    [Google Scholar]
  38. Wagner P. L., Neely M. N., Zhang X., Acheson D. W. K., Waldor M. K., Friedman D. I. 2001a; Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. J Bacteriol 183:2081–2085
    [Google Scholar]
  39. Wagner P. L., Acheson D. W., Waldor M. K. 2001b; Human neutrophils and their products induce Shiga toxin production by enterohemorrhagic Escherichia coli . Infect Immun 69:1934–1937
    [Google Scholar]
  40. Wagner P. L., Livny J., Neely M. N., David W. K., Acheson D. W. K., Friedman D. I., Waldor M. K. 2002; Bacteriophage control of Shiga toxin 1 production and release by Escherichia coli . Mol Microbiol 44:957–970
    [Google Scholar]
  41. Waldor M. K., Friedman D. I. 2005; Phage regulatory circuits and virulence gene expression. Curr Opin Microbiol 8:459–465
    [Google Scholar]
  42. Watarai M., Sato T., Kobayashi M., Shimizu T., Yamasaki S., Tobe T., Sasakawa C., Takeda Y. 1998; Identification and characterization of a newly isolated Shiga toxin 2-converting phage from Shiga toxin-producing Escherichia coli . Infect Immun 66:4100–4107
    [Google Scholar]
  43. Węgrzyn A., Węgrzyn G. 2001; Inheritance of the replication complex: a unique or common phenomenon in the control of DNA replication?. Arch Microbiol 175:86–93
    [Google Scholar]
  44. Węgrzyn G., Węgrzyn A. 2002; Stress responses and replication of plasmids in bacterial cells. Microb Cell Fact 1:2
    [Google Scholar]
  45. Węgrzyn G., Węgrzyn A. 2005; Genetic switches during bacteriophage lambda development. Prog Nucleic Acid Res Mol Biol 79:1–48
    [Google Scholar]
  46. Węgrzyn G., Pawłowicz A., Taylor K. 1992; Stability of coliphage λ DNA replication initiator, the λ O protein. J Mol Biol 226:675–680
    [Google Scholar]
  47. Węgrzyn A., Węgrzyn G., Taylor K. 1995; Protection of coliphage λ O initiator protein from proteolysis in the assembly of the replication complex in vivo . Virology 207:179–184
    [Google Scholar]
  48. Węgrzyn A., Węgrzyn G., Taylor K. 1996a; Protein inheritance: λ plasmid replication perpetuated by the heritable replication complex. Genes Cells 1:953–963
    [Google Scholar]
  49. Węgrzyn G., Węgrzyn A., Pankiewicz A., Taylor K. 1996b; Allele specificity of the Escherichia coli dnaA gene function in the replication of plasmids derived from phage λ . Mol Gen Genet 252:580–586
    [Google Scholar]
  50. Weinstein D. L., Holmes R. K., O'Brien A. D. 1988; Effects of iron and temperature on Shiga-like toxin I production by Escherichia coli . Infect Immun 56:106–111
    [Google Scholar]
  51. Xiao H., Kalman M., Ikehara K., Zemel S., Glaser G., Cashel M. 1991; Residual guanosine 3′,5′-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations. J Biol Chem 266:5980–5990
    [Google Scholar]
  52. Zhang X., Bremer H. 1995; Control of the Escherichia coli rrnB P1 promoter strength by ppGpp. J Biol Chem 270:11181–11189
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042820-0
Loading
/content/journal/micro/10.1099/mic.0.042820-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed