1887

Abstract

An extremely thermophilic bacterium, , possesses two glutamate dehydrogenase (GDH) genes, and , putatively forming an operon on the genome. To elucidate the functions of these genes, the gene products were purified and characterized. GdhA showed no GDH activity, while GdhB showed GDH activity for reductive amination 1.3-fold higher than that for oxidative deamination. When GdhA was co-expressed with His-tag-fused GdhB, GdhA was co-purified with His-tagged GdhB. Compared with GdhB alone, co-purified GdhA–GdhB had decreased reductive amination activity and increased oxidative deamination activity, resulting in a 3.1-fold preference for oxidative deamination over reductive amination. Addition of hydrophobic amino acids affected the GDH activity of the co-purified GdhA–GdhB hetero-complex. Among the amino acids, leucine had the largest effect on activity: addition of 1 mM leucine elevated the GDH activity of the co-purified GdhA–GdhB by 974 and 245 % for reductive amination and oxidative deamination, respectively, while GdhB alone did not show such marked activation by leucine. Kinetic analysis revealed that the elevation of GDH activity by leucine is attributable to the enhanced turnover number of GDH. In this hetero-oligomeric GDH system, GdhA and GdhB act as regulatory and catalytic subunits, respectively, and GdhA can modulate the activity of GdhB through hetero-complex formation, depending on the availability of hydrophobic amino acids. This study provides the first finding, to our knowledge, of a hetero-oligomeric GDH that can be regulated allosterically.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042721-0
2010-12-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3801.html?itemId=/content/journal/micro/10.1099/mic.0.042721-0&mimeType=html&fmt=ahah

References

  1. Aalén, N., Steen, I. H., Birkeland, N. K. & Lien, T. ( 1997; ). Purification and properties of an extremely thermostable NADP+-specific glutamate dehydrogenase from Archaeoglobus fulgidus. Arch Microbiol 168, 536–539.[CrossRef]
    [Google Scholar]
  2. Abramoff, M. D., Magelhaes, P. J. & Ram, S. J. ( 2004; ). Image processing with ImageJ. Biophotonics International 11, 36–42.
    [Google Scholar]
  3. Baggio, L. & Morrison, M. ( 1996; ). The NAD(P)H-utilizing glutamate dehydrogenase of Bacteroides thetaiotaomicron belongs to enzyme family I, and its activity is affected by trans-acting gene(s) positioned downstream of gdhA. J Bacteriol 178, 7212–7220.
    [Google Scholar]
  4. Baker, P. J., Britton, K. L., Rice, D. W., Rob, A. & Stillman, T. J. ( 1992; ). Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. J Mol Biol 228, 662–671.[CrossRef]
    [Google Scholar]
  5. Barnes, L. D., Kuehn, G. D. & Atkinson, D. E. ( 1971; ). Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties. Biochemistry 10, 3939–3944.[CrossRef]
    [Google Scholar]
  6. Bolivar, J. M., Cava, F., Mateo, C., Rocha-Martin, J., Guisan, J. M., Berenguer, J. & Fernandez-Lafuente, R. ( 2008; ). Immobilization–stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus. Appl Microbiol Biotechnol 80, 49–58.[CrossRef]
    [Google Scholar]
  7. Bradford, M. M. ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248–254.[CrossRef]
    [Google Scholar]
  8. Camardella, L., Di Fraia, R., Antignani, A., Ciardiello, M. A., di Prisco, G., Coleman, J. K., Buchon, L., Guespin, J. & Russell, N. J. ( 2002; ). The antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme. Comp Biochem Physiol A Mol Integr Physiol 131, 559–567.[CrossRef]
    [Google Scholar]
  9. Cupp, J. R. & McAlister-Henn, L. ( 1992; ). Cloning and characterization of the gene encoding the IDH1 subunit of NAD+-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae. J Biol Chem 267, 16417–16423.
    [Google Scholar]
  10. Cupp, J. R. & McAlister-Henn, L. ( 1993; ). Kinetic analysis of NAD+-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry 32, 9323–9328.[CrossRef]
    [Google Scholar]
  11. Fang, J., Hsu, B. Y., MacMullen, C. M., Poncz, M., Smith, T. J. & Stanley, C. A. ( 2002; ). Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem J 363, 81–87.[CrossRef]
    [Google Scholar]
  12. Gabriel, J. L., Zervos, P. R. & Plaut, G. W. ( 1986; ). Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metabolism 35, 661–667.[CrossRef]
    [Google Scholar]
  13. Goldenberg, D. P. ( 1989; ). Analysis of protein conformation by gel electrophoresis. In Protein Structure: a Practical Approach, pp. 225–250. Edited by Creighton, T.. Oxford. : IRL Press.
    [Google Scholar]
  14. Hamza, M. A. & Engel, P. C. ( 2008; ). Homotropic allosteric control in clostridial glutamate dehydrogenase: different mechanisms for glutamate and NAD+? FEBS Lett 582, 1816–1820.[CrossRef]
    [Google Scholar]
  15. Henne, A., Bruggemann, H., Raasch, C., Wiezer, A., Hartsch, T., Liesegang, H., Johann, A., Lienard, T., Gohl, O. & other authors ( 2004; ). The genome sequence of the extreme thermophile Thermus thermophilus. Nat Biotechnol 22, 547–553.[CrossRef]
    [Google Scholar]
  16. Hoseki, J., Okamoto, A., Takada, N., Suenaga, A., Futatsugi, N., Konagaya, A., Taiji, M., Yano, T., Kuramitsu, S. & Kagamiyama, H. ( 2003; ). Increased rigidity of domain structures enhances the stability of a mutant enzyme created by directed evolution. Biochemistry 42, 14469–14475.[CrossRef]
    [Google Scholar]
  17. Hu, G., Lin, A. P. & McAlister-Henn, L. ( 2006; ). Physiological consequences of loss of allosteric activation of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 281, 16935–16942.[CrossRef]
    [Google Scholar]
  18. Hudson, R. C. & Daniel, R. M. ( 1993; ). l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B 106, 767–792.
    [Google Scholar]
  19. Kawakami, R., Sakuraba, H. & Ohshima, T. ( 2007; ). Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil. J Bacteriol 189, 5626–5633.[CrossRef]
    [Google Scholar]
  20. Kobayashi, T., Higuchi, S., Kimura, K., Kudo, T. & Horikoshi, K. ( 1995; ). Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus. J Biochem 118, 587–592.
    [Google Scholar]
  21. Koyama, Y., Hoshino, T., Tomizuka, N. & Furukawa, K. ( 1986; ). Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol 166, 338–340.
    [Google Scholar]
  22. Laemmli, U. K. ( 1970; ). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.[CrossRef]
    [Google Scholar]
  23. Lu, C. D. & Abdelal, A. T. ( 2001; ). The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD+-dependent glutamate dehydrogenase which is subject to allosteric regulation. J Bacteriol 183, 490–499.[CrossRef]
    [Google Scholar]
  24. Miñambres, B., Olivera, E. R., Jensen, R. A. & Luengo, J. M. ( 2000; ). A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J Biol Chem 275, 39529–39542.[CrossRef]
    [Google Scholar]
  25. Mountain, A., McPherson, M. J., Baron, A. J. & Wootton, J. C. ( 1985; ). The Klebsiella aerogenes glutamate dehydrogenase (gdhA) gene: cloning, high-level expression and hybrid enzyme formation in Escherichia coli. Mol Gen Genet 199, 141–145.[CrossRef]
    [Google Scholar]
  26. Noor, S. & Punekar, N. S. ( 2005; ). Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon–nitrogen interface. Microbiology 151, 1409–1419.[CrossRef]
    [Google Scholar]
  27. Rice, D. W., Baker, P. J., Farrants, G. W. & Hornby, D. P. ( 1987; ). The crystal structure of glutamate dehydrogenase from Clostridium symbiosum at 0.6 nm resolution. Biochem J 242, 789–795.
    [Google Scholar]
  28. Ruiz, J. L., Ferrer, J., Camacho, M. & Bonete, M. J. ( 1998; ). NAD-specific glutamate dehydrogenase from Thermus thermophilus HB8: purification and enzymatic properties. FEMS Microbiol Lett 159, 15–20.[CrossRef]
    [Google Scholar]
  29. Ruiz, J. L., Ferrer, J., Pire, C., Llorca, F. I. & Bonete, M. J. ( 2003; ). Denaturation studies by fluorescence and quenching of thermophilic protein NAD+-glutamate dehydrogenase from Thermus thermophilus HB8. J Protein Chem 22, 295–301.[CrossRef]
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY. : Cold Spring Harbor Laboratory.
    [Google Scholar]
  31. Smith, E. L., Austin, B. M., Blumenthal, K. M. & Nyc, J. F. ( 1975; ). Glutamate dehydrogenase. In The Enzymes, pp. 293–367. Edited by Boyer, E. D.. New York. : Academic Press.
    [Google Scholar]
  32. Smith, T. J., Schmidt, T., Fang, J., Wu, J., Siuzdak, G. & Stanley, C. A. ( 2002; ). The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol 318, 765–777.[CrossRef]
    [Google Scholar]
  33. Stanley, C. A., Lieu, Y. K., Hsu, B. Y., Burlina, A. B., Greenberg, C. R., Hopwood, N. J., Perlman, K., Rich, B. H., Zammarchi, E. & Poncz, M. ( 1998; ). Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med 338, 1352–1357.[CrossRef]
    [Google Scholar]
  34. Stillman, T. J., Baker, P. J., Britton, K. L. & Rice, D. W. ( 1993; ). Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. J Mol Biol 234, 1131–1139.[CrossRef]
    [Google Scholar]
  35. Syed, S. E. & Engel, P. C. ( 1984; ). Ox liver glutamate dehydrogenase. The use of chemical modification to study the relationship between catalytic sites for different amino acid substrates and the question of kinetic non-equivalence of the subunits. Biochem J 222, 621–626.
    [Google Scholar]
  36. Tanaka, T., Kawano, N. & Oshima, T. ( 1981; ). Cloning of 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification of the gene product. J Biochem 89, 677–682.
    [Google Scholar]
  37. Taylor, A. B., Hu, G., Hart, P. J. & McAlister-Henn, L. ( 2008; ). Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem 283, 10872–10880.[CrossRef]
    [Google Scholar]
  38. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  39. Turano, F. J., Thakkar, S. S., Fang, T. & Weisemann, J. M. ( 1997; ). Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis. Plant Physiol 113, 1329–1341.[CrossRef]
    [Google Scholar]
  40. Veronese, F. M., Nyc, J. F., Degani, Y., Brown, D. M. & Smith, E. L. ( 1974; ). Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. I. Purification and molecular properties. J Biol Chem 249, 7922–7928.
    [Google Scholar]
  41. Watson, D. H. & Wootton, J. C. ( 1978; ). Subunit ratios of separated hybrid hexamers of Neurospora NADP-specific glutamate dehydrogenase containing complementing mutationally modified monomers. Biochem J 175, 1125–1133.
    [Google Scholar]
  42. Wen, Z. & Morrison, M. ( 1996; ). The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B14 can be attributed to one enzyme (GdhA), and gdhA expression is regulated in response to the nitrogen source available for growth. Appl Environ Microbiol 62, 3826–3833.
    [Google Scholar]
  43. West, D. J., Tuveson, R. W., Barratt, R. W. & Fincham, J. R. ( 1967; ). Allosteric effects in nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Neurospora. J Biol Chem 242, 2134–2138.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042721-0
Loading
/content/journal/micro/10.1099/mic.0.042721-0
Loading

Data & Media loading...

Supplements

[PDF](8 KB)

PDF

[PDF](3503 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error