1887

Abstract

An extremely thermophilic bacterium, , possesses two glutamate dehydrogenase (GDH) genes, and , putatively forming an operon on the genome. To elucidate the functions of these genes, the gene products were purified and characterized. GdhA showed no GDH activity, while GdhB showed GDH activity for reductive amination 1.3-fold higher than that for oxidative deamination. When GdhA was co-expressed with His-tag-fused GdhB, GdhA was co-purified with His-tagged GdhB. Compared with GdhB alone, co-purified GdhA–GdhB had decreased reductive amination activity and increased oxidative deamination activity, resulting in a 3.1-fold preference for oxidative deamination over reductive amination. Addition of hydrophobic amino acids affected the GDH activity of the co-purified GdhA–GdhB hetero-complex. Among the amino acids, leucine had the largest effect on activity: addition of 1 mM leucine elevated the GDH activity of the co-purified GdhA–GdhB by 974 and 245 % for reductive amination and oxidative deamination, respectively, while GdhB alone did not show such marked activation by leucine. Kinetic analysis revealed that the elevation of GDH activity by leucine is attributable to the enhanced turnover number of GDH. In this hetero-oligomeric GDH system, GdhA and GdhB act as regulatory and catalytic subunits, respectively, and GdhA can modulate the activity of GdhB through hetero-complex formation, depending on the availability of hydrophobic amino acids. This study provides the first finding, to our knowledge, of a hetero-oligomeric GDH that can be regulated allosterically.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042721-0
2010-12-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3801.html?itemId=/content/journal/micro/10.1099/mic.0.042721-0&mimeType=html&fmt=ahah

References

  1. Aalén N., Steen I. H., Birkeland N. K., Lien T.. 1997; Purification and properties of an extremely thermostable NADP+-specific glutamate dehydrogenase from Archaeoglobus fulgidus . Arch Microbiol168:536–539
    [Google Scholar]
  2. Abramoff M. D., Magelhaes P. J., Ram S. J.. 2004; Image processing with ImageJ. Biophotonics International11:36–42
    [Google Scholar]
  3. Baggio L., Morrison M.. 1996; The NAD(P)H-utilizing glutamate dehydrogenase of Bacteroides thetaiotaomicron belongs to enzyme family I, and its activity is affected by trans -acting gene(s) positioned downstream of gdhA . J Bacteriol178:7212–7220
    [Google Scholar]
  4. Baker P. J., Britton K. L., Rice D. W., Rob A., Stillman T. J.. 1992; Structural consequences of sequence patterns in the fingerprint region of the nucleotide binding fold. Implications for nucleotide specificity. J Mol Biol228:662–671
    [Google Scholar]
  5. Barnes L. D., Kuehn G. D., Atkinson D. E.. 1971; Yeast diphosphopyridine nucleotide specific isocitrate dehydrogenase. Purification and some properties. Biochemistry10:3939–3944
    [Google Scholar]
  6. Bolivar J. M., Cava F., Mateo C., Rocha-Martin J., Guisan J. M., Berenguer J., Fernandez-Lafuente R.. 2008; Immobilization–stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus . Appl Microbiol Biotechnol80:49–58
    [Google Scholar]
  7. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem72:248–254
    [Google Scholar]
  8. Camardella L., Di Fraia R., Antignani A., Ciardiello M. A., di Prisco G., Coleman J. K., Buchon L., Guespin J., Russell N. J.. 2002; The antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme. Comp Biochem Physiol A Mol Integr Physiol131:559–567
    [Google Scholar]
  9. Cupp J. R., McAlister-Henn L.. 1992; Cloning and characterization of the gene encoding the IDH1 subunit of NAD+-dependent isocitrate dehydrogenase from Saccharomyces cerevisiae . J Biol Chem267:16417–16423
    [Google Scholar]
  10. Cupp J. R., McAlister-Henn L.. 1993; Kinetic analysis of NAD+-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis. Biochemistry32:9323–9328
    [Google Scholar]
  11. Fang J., Hsu B. Y., MacMullen C. M., Poncz M., Smith T. J., Stanley C. A.. 2002; Expression, purification and characterization of human glutamate dehydrogenase (GDH) allosteric regulatory mutations. Biochem J363:81–87
    [Google Scholar]
  12. Gabriel J. L., Zervos P. R., Plaut G. W.. 1986; Activity of purified NAD-specific isocitrate dehydrogenase at modulator and substrate concentrations approximating conditions in mitochondria. Metabolism35:661–667
    [Google Scholar]
  13. Goldenberg D. P.. 1989; Analysis of protein conformation by gel electrophoresis. In Protein Structure: a Practical Approach pp225–250 Edited by Creighton T.. Oxford: IRL Press;
    [Google Scholar]
  14. Hamza M. A., Engel P. C.. 2008; Homotropic allosteric control in clostridial glutamate dehydrogenase: different mechanisms for glutamate and NAD+?. FEBS Lett582:1816–1820
    [Google Scholar]
  15. Henne A., Bruggemann H., Raasch C., Wiezer A., Hartsch T., Liesegang H., Johann A., Lienard T., Gohl O.. other authors 2004; The genome sequence of the extreme thermophile Thermus thermophilus . Nat Biotechnol22:547–553
    [Google Scholar]
  16. Hoseki J., Okamoto A., Takada N., Suenaga A., Futatsugi N., Konagaya A., Taiji M., Yano T., Kuramitsu S., Kagamiyama H.. 2003; Increased rigidity of domain structures enhances the stability of a mutant enzyme created by directed evolution. Biochemistry42:14469–14475
    [Google Scholar]
  17. Hu G., Lin A. P., McAlister-Henn L.. 2006; Physiological consequences of loss of allosteric activation of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem281:16935–16942
    [Google Scholar]
  18. Hudson R. C., Daniel R. M.. 1993; l-Glutamate dehydrogenases: distribution, properties and mechanism. Comp Biochem Physiol B106:767–792
    [Google Scholar]
  19. Kawakami R., Sakuraba H., Ohshima T.. 2007; Gene cloning and characterization of the very large NAD-dependent l-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum , isolated from cold soil. J Bacteriol189:5626–5633
    [Google Scholar]
  20. Kobayashi T., Higuchi S., Kimura K., Kudo T., Horikoshi K.. 1995; Properties of glutamate dehydrogenase and its involvement in alanine production in a hyperthermophilic archaeon, Thermococcus profundus . J Biochem118:587–592
    [Google Scholar]
  21. Koyama Y., Hoshino T., Tomizuka N., Furukawa K.. 1986; Genetic transformation of the extreme thermophile Thermus thermophilus and of other Thermus spp. J Bacteriol166:338–340
    [Google Scholar]
  22. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  23. Lu C. D., Abdelal A. T.. 2001; The gdhB gene of Pseudomonas aeruginosa encodes an arginine-inducible NAD+-dependent glutamate dehydrogenase which is subject to allosteric regulation. J Bacteriol183:490–499
    [Google Scholar]
  24. Miñambres B., Olivera E. R., Jensen R. A., Luengo J. M.. 2000; A new class of glutamate dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus . J Biol Chem275:39529–39542
    [Google Scholar]
  25. Mountain A., McPherson M. J., Baron A. J., Wootton J. C.. 1985; The Klebsiella aerogenes glutamate dehydrogenase ( gdhA ) gene: cloning, high-level expression and hybrid enzyme formation in Escherichia coli . Mol Gen Genet199:141–145
    [Google Scholar]
  26. Noor S., Punekar N. S.. 2005; Allosteric NADP-glutamate dehydrogenase from aspergilli: purification, characterization and implications for metabolic regulation at the carbon–nitrogen interface. Microbiology151:1409–1419
    [Google Scholar]
  27. Rice D. W., Baker P. J., Farrants G. W., Hornby D. P.. 1987; The crystal structure of glutamate dehydrogenase from Clostridium symbiosum at 0.6 nm resolution. Biochem J242:789–795
    [Google Scholar]
  28. Ruiz J. L., Ferrer J., Camacho M., Bonete M. J.. 1998; NAD-specific glutamate dehydrogenase from Thermus thermophilus HB8: purification and enzymatic properties. FEMS Microbiol Lett159:15–20
    [Google Scholar]
  29. Ruiz J. L., Ferrer J., Pire C., Llorca F. I., Bonete M. J.. 2003; Denaturation studies by fluorescence and quenching of thermophilic protein NAD+-glutamate dehydrogenase from Thermus thermophilus HB8. J Protein Chem22:295–301
    [Google Scholar]
  30. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  31. Smith E. L., Austin B. M., Blumenthal K. M., Nyc J. F.. 1975; Glutamate dehydrogenase. In The Enzymes pp293–367 Edited by Boyer E. D.. New York: Academic Press;
    [Google Scholar]
  32. Smith T. J., Schmidt T., Fang J., Wu J., Siuzdak G., Stanley C. A.. 2002; The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J Mol Biol318:765–777
    [Google Scholar]
  33. Stanley C. A., Lieu Y. K., Hsu B. Y., Burlina A. B., Greenberg C. R., Hopwood N. J., Perlman K., Rich B. H., Zammarchi E., Poncz M.. 1998; Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene. N Engl J Med338:1352–1357
    [Google Scholar]
  34. Stillman T. J., Baker P. J., Britton K. L., Rice D. W.. 1993; Conformational flexibility in glutamate dehydrogenase. Role of water in substrate recognition and catalysis. J Mol Biol234:1131–1139
    [Google Scholar]
  35. Syed S. E., Engel P. C.. 1984; Ox liver glutamate dehydrogenase. The use of chemical modification to study the relationship between catalytic sites for different amino acid substrates and the question of kinetic non-equivalence of the subunits. Biochem J222:621–626
    [Google Scholar]
  36. Tanaka T., Kawano N., Oshima T.. 1981; Cloning of 3-isopropylmalate dehydrogenase gene of an extreme thermophile and partial purification of the gene product. J Biochem89:677–682
    [Google Scholar]
  37. Taylor A. B., Hu G., Hart P. J., McAlister-Henn L.. 2008; Allosteric motions in structures of yeast NAD+-specific isocitrate dehydrogenase. J Biol Chem283:10872–10880
    [Google Scholar]
  38. Thompson J. D., Higgins D. G., Gibson T. J.. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res22:4673–4680
    [Google Scholar]
  39. Turano F. J., Thakkar S. S., Fang T., Weisemann J. M.. 1997; Characterization and expression of NAD(H)-dependent glutamate dehydrogenase genes in Arabidopsis . Plant Physiol113:1329–1341
    [Google Scholar]
  40. Veronese F. M., Nyc J. F., Degani Y., Brown D. M., Smith E. L.. 1974; Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora . I. Purification and molecular properties. J Biol Chem249:7922–7928
    [Google Scholar]
  41. Watson D. H., Wootton J. C.. 1978; Subunit ratios of separated hybrid hexamers of Neurospora NADP-specific glutamate dehydrogenase containing complementing mutationally modified monomers. Biochem J175:1125–1133
    [Google Scholar]
  42. Wen Z., Morrison M.. 1996; The NAD(P)H-dependent glutamate dehydrogenase activities of Prevotella ruminicola B14 can be attributed to one enzyme (GdhA), and gdhA expression is regulated in response to the nitrogen source available for growth. Appl Environ Microbiol62:3826–3833
    [Google Scholar]
  43. West D. J., Tuveson R. W., Barratt R. W., Fincham J. R.. 1967; Allosteric effects in nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Neurospora . J Biol Chem242:2134–2138
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042721-0
Loading
/content/journal/micro/10.1099/mic.0.042721-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error