A streptococcal effector protein that inhibits biofilm development Free

Abstract

Dental plaque formation is a developmental process involving cooperation and competition within a diverse microbial community, approximately 70 % of which is composed of an array of streptococci during the early stages of supragingival plaque formation. In this study, 79 cell-free culture supernatants from a variety of oral streptococci were screened to identify extracellular compounds that inhibit biofilm formation by the oral anaerobe strain 381. The majority of the streptococcal supernatants (61 isolates) resulted in lysis of cells, and some (17 isolates) had no effect on cell viability, growth or biofilm formation. One strain, however, produced a supernatant that abolished biofilm formation without affecting growth rate. Analysis of this activity led to the discovery that a 48 kDa protein was responsible for the inhibition. Protein sequence identification and enzyme activity assays identified the effector protein as an arginine deiminase. To identify the mechanism(s) by which this protein inhibits biofilm formation, we began by examining the expression levels of genes encoding fimbrial subunits; surface structures known to be involved in biofilm development. Quantitative RT-PCR analysis revealed that exposure of cells to this protein for 1 h resulted in the downregulation of genes encoding proteins that are the major subunits of two distinct types of thin, single-stranded fimbriae ( and ). Furthermore, this downregulation occurred in the absence of arginine deiminase enzymic activity. Hence, our data indicate that can sense this extracellular protein, produced by an oral streptococcus (), and respond by downregulating expression of cell-surface appendages required for attachment and biofilm development.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042671-0
2010-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3469.html?itemId=/content/journal/micro/10.1099/mic.0.042671-0&mimeType=html&fmt=ahah

References

  1. Amano A., Sharma A., Sojar H. T., Kuramitsu H. K., Genco R. J. 1994; Effects of temperature stress on expression of fimbriae and superoxide dismutase by Porphyromonas gingivalis. Infect Immun 62:4682–4685
    [Google Scholar]
  2. Amano A., Nakagawa I., Okahashi N., Hamada N. 2004; Variations of Porphyromonas gingivalis fimbriae in relation to microbial pathogenesis. J Periodontal Res 39:136–142
    [Google Scholar]
  3. Barnard J. P., Stinson M. W. 1999; Influence of environmental conditions on hydrogen peroxide formation by Streptococcus gordonii. Infect Immun 67:6558–6564
    [Google Scholar]
  4. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  5. Burne R. A., Marquis R. E. 2000; Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1–6
    [Google Scholar]
  6. Chen T., Yu W.-H., Izard J., Baranova O. V., Lakshmanan A., Dewhirst F. E. 2010; The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database (in press ), doi: 10.1093/database/baq013
  7. Chikindas M. L., Novak J., Driessen A. J., Konings W. N., Schilling K. M., Caufield P. W. 1995; Mutacin II, a bactericidal antibiotic from Streptococcus mutans. Antimicrob Agents Chemother 39:2656–2660
    [Google Scholar]
  8. Choi J. I., Nakagawa T., Yamada S., Takazoe I., Okuda K. 1990; Clinical, microbiological and immunological studies on recurrent periodontal disease. J Clin Periodontol 17:426–434
    [Google Scholar]
  9. Cole J. N., Ramirez R. D., Currie B. J., Cordwell S. J., Djordjevic S. P., Walker M. J. 2005; Surface analyses and immune reactivities of major cell wall-associated proteins of group a streptococcus. Infect Immun 73:3137–3146
    [Google Scholar]
  10. Cunin R., Glansdorff N., Pierard A., Stalon V. 1986; Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352
    [Google Scholar]
  11. Davey M. E. 2006; Techniques for the growth of Porphyromonas gingivalis biofilms. Periodontol 2000; 42:27–35
    [Google Scholar]
  12. Davey M. E., Costerton J. W. 2006; Molecular genetics analyses of biofilm formation in oral isolates. Periodontol 2000; 42:13–26
    [Google Scholar]
  13. Davey M. E., Duncan M. J. 2006; Enhanced biofilm formation and loss of capsule synthesis: deletion of a putative glycosyltransferase in Porphyromonas gingivalis. J Bacteriol 188:5510–5523
    [Google Scholar]
  14. Degnan B. A., Palmer J. M., Robson T., Jones C. E., Fischer M., Glanville M., Mellor G. D., Diamond A. G., Kehoe M. A., Goodacre J. A. 1998; Inhibition of human peripheral blood mononuclear cell proliferation by Streptococcus pyogenes cell extract is associated with arginine deiminase activity. Infect Immun 66:3050–3058
    [Google Scholar]
  15. Dewhirst F. E., Chen T., Izard J., Paster B. J., Tanner A. C. R., Yu W.-H., Lakshmanan A., Wade W. G. 2010 The Human Oral Microbiome. J Bacteriol (in press ), doi: 10.1128/JB.00542-10
    [Google Scholar]
  16. Dzink J. L., Socransky S. S., Haffajee A. D. 1988; The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J Clin Periodontol 15:316–323
    [Google Scholar]
  17. Falkow S. 2006; Is persistent bacterial infection good for your health?. Cell 124:699–702
    [Google Scholar]
  18. Gong H., Zolzer F., von Recklinghausen G., Rossler J., Breit S., Havers W., Fotsis T., Schweigerer L. 1999; Arginine deiminase inhibits cell proliferation by arresting cell cycle and inducing apoptosis. Biochem Biophys Res Commun 261:10–14
    [Google Scholar]
  19. Gong H., Zolzer F., von Recklinghausen G., Havers W., Schweigerer L. 2000; Arginine deiminase inhibits proliferation of human leukemia cells more potently than asparaginase by inducing cell cycle arrest and apoptosis. Leukemia 14:826–829
    [Google Scholar]
  20. Grossi S. G., Zambon J. J., Ho A. W., Koch G., Dunford R. G., Machtei E. E., Norderyd O. M., Genco R. J. 1994; Assessment of risk for periodontal disease. I. Risk indicators for attachment loss. J Periodontol 65:260–267
    [Google Scholar]
  21. Hamada S., Amano A., Kimura S., Nakagawa I., Kawabata S., Morisaki I. 1998; The importance of fimbriae in the virulence and ecology of some oral bacteria. Oral Microbiol Immunol 13:129–138
    [Google Scholar]
  22. Hayashi J., Nishikawa K., Hirano R., Noguchi T., Yoshimura F. 2000; Identification of a two-component signal transduction system involved in fimbriation of Porphyromonas gingivalis. Microbiol Immunol 44:279–282
    [Google Scholar]
  23. Jakubovics N. S., Gill S. R., Vickerman M. M., Kolenbrander P. E. 2008; Role of hydrogen peroxide in competition and cooperation between Streptococcus gordonii and Actinomyces naeslundii. FEMS Microbiol Ecol 66:637–644
    [Google Scholar]
  24. Kanamoto T., Sato S., Nakashima H., Inoue M. 2007; Proliferation of mitogen-stimulated human peripheral blood mononuclear cells is inhibited by extracellular arginine deiminase of Granulicatella elegans isolated from the human mouth. J Infect Chemother 13:353–355
    [Google Scholar]
  25. Kolenbrander P. E., Andersen R. N., Blehert D. S., Egland P. G., Foster J. S., Palmer R. J. Jr 2002; Communication among oral bacteria. Microbiol Mol Biol Rev 66:486–505
    [Google Scholar]
  26. Kreth J., Merritt J., Shi W., Qi F. 2005; Competition and coexistence between Streptococcus mutans and Streptococcus sanguinis in the dental biofilm. J Bacteriol 187:7193–7203
    [Google Scholar]
  27. Kuramitsu H. K., He X., Lux R., Anderson M. H., Shi W. 2007; Interspecies interactions within oral microbial communities. Microbiol Mol Biol Rev 71:653–670
    [Google Scholar]
  28. Lamont R. J., Jenkinson H. F. 1998; Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol Mol Biol Rev 62:1244–1263
    [Google Scholar]
  29. Lamont R. J., Yilmaz O. 2002; In or out: the invasiveness of oral bacteria. Periodontol 2000; 30:61–69
    [Google Scholar]
  30. Lei B., Mackie S., Lukomski S., Musser J. M. 2000; Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect Immun 68:6807–6818
    [Google Scholar]
  31. Lin X., Wu J., Xie H. 2006; Porphyromonas gingivalis minor fimbriae are required for cell–cell interactions. Infect Immun 74:6011–6015
    [Google Scholar]
  32. McKee A. S., McDermid A. S., Baskerville A., Dowsett A. B., Ellwood D. C., Marsh P. D. 1986; Effect of hemin on the physiology and virulence of Bacteroides gingivalis W50. Infect Immun 52:349–355
    [Google Scholar]
  33. Milner P., Batten J. E., Curtis M. A. 1996; Development of a simple chemically defined medium for Porphyromonas gingivalis: requirement for alpha-ketoglutarate. FEMS Microbiol Lett 140:125–130
    [Google Scholar]
  34. Moore W. E., Moore L. H., Ranney R. R., Smibert R. M., Burmeister J. A., Schenkein H. A. 1991; The microflora of periodontal sites showing active destructive progression. J Clin Periodontol 18:729–739
    [Google Scholar]
  35. Nascimento M. M., Gordan V. V., Garvan C. W., Browngardt C. M., Burne R. A. 2009; Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiol Immunol 24:89–95
    [Google Scholar]
  36. Nishikawa K., Yoshimura F., Duncan M. J. 2004; A regulation cascade controls expression of Porphyromonas gingivalis fimbriae via the FimR response regulator. Mol Microbiol 54:546–560
    [Google Scholar]
  37. Park Y., James C. E., Yoshimura F., Lamont R. J. 2006; Expression of the short fimbriae of Porphyromonas gingivalis is regulated in oral bacterial consortia. FEMS Microbiol Lett 262:65–71
    [Google Scholar]
  38. Qi F., Chen P., Caufield P. W. 1999; Purification of mutacin III from group III Streptococcus mutans UA787 and genetic analyses of mutacin III biosynthesis genes. Appl Environ Microbiol 65:3880–3887
    [Google Scholar]
  39. Qi F., Chen P., Caufield P. W. 2001; The group I strain of Streptococcus mutans, UA140, produces both the lantibiotic mutacin I and a nonlantibiotic bacteriocin, mutacin IV. Appl Environ Microbiol 67:15–21
    [Google Scholar]
  40. Socransky S. S., Haffajee A. D. 2000; Dental biofilms: difficult therapeutic targets. Periodontol 2000; 28:12–55
    [Google Scholar]
  41. Upton M., Tagg J. R., Wescombe P., Jenkinson H. F. 2001; Intra- and interspecies signaling between Streptococcus salivarius and Streptococcus pyogenes mediated by SalA and SalA1 lantibiotic peptides. J Bacteriol 183:3931–3938
    [Google Scholar]
  42. Watanabe K., Onoe T., Ozeki M., Shimizu Y., Sakayori T., Nakamura H., Yoshimura F. 1996; Sequence and product analyses of the four genes downstream from the fimbrilin gene ( fimA) of the oral anaerobe Porphyromonas gingivalis. Microbiol Immunol 40:725–734
    [Google Scholar]
  43. Watanabe-Kato T., Hayashi J. I., Terazawa Y., Hoover C. I., Nakayama K., Hibi E., Kawakami N., Ikeda T., Nakamura H. other authors 1998; Isolation and characterization of transposon-induced mutants of Porphyromonas gingivalis deficient in fimbriation. Microb Pathog 24:25–35
    [Google Scholar]
  44. Xie H., Cai S., Lamont R. J. 1997; Environmental regulation of fimbrial gene expression in Porphyromonas gingivalis. Infect Immun 65:2265–2271
    [Google Scholar]
  45. Xie H., Cook G. S., Costerton J. W., Bruce G., Rose T. M., Lamont R. J. 2000; Intergeneric communication in dental plaque biofilms. J Bacteriol 182:7067–7069
    [Google Scholar]
  46. Xie H., Lin X., Wang B. Y., Wu J., Lamont R. J. 2007; Identification of a signalling molecule involved in bacterial intergeneric communication. Microbiology 153:3228–3234
    [Google Scholar]
  47. Yilmaz O. 2008; The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology 154:2897–2903
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042671-0
Loading
/content/journal/micro/10.1099/mic.0.042671-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed