Growth of F1 on styrene requires increased catechol-2,3-dioxygenase activity, not a new hydrolase Free

Abstract

F1 cannot grow on styrene despite being able to degrade it through the toluene degradation () pathway. Previous work had suggested that this was because TodF, the -fission product (MFP) hydrolase, was unable to metabolize the styrene MFP 2-hydroxy-6-vinylhexa-2,4-dienoate. Here we demonstrate via kinetic and growth analyses that the substrate specificity of TodF is not the limiting factor preventing F1 from growing on styrene. Rather, we found that the metabolite 3-vinylcatechol accumulated during styrene metabolism and that micromolar concentrations of this intermediate inactivated TodE, the catechol-2,3-dioxygenase (C23O) responsible for its cleavage. Analysis of cells growing on styrene suggested that inactivation of TodE and the subsequent accumulation of 3-vinylcatechol resulted in toxicity and cell death. We found that simply overexpressing TodE on a plasmid (pTodE) was all that was necessary to allow F1 to grow on styrene. Similar results were also obtained by expressing a related C23O, DmpB from sp. CF600, in tandem with its plant-like ferredoxin, DmpQ (pDmpQB). Further analysis revealed that the ability of F1 (pDmpQB) and F1 (pTodE) to grow on styrene correlated with increased C23O activity as well as resistance of the enzyme to 3-vinylcatechol-mediated inactivation. Although TodE inactivation by 3-halocatechols has been studied before, to our knowledge, this is the first published report demonstrating inactivation by a 3-vinylcatechol. Given the ubiquity of catechol intermediates in aromatic hydrocarbon metabolism, our results further demonstrate the importance of C23O inactivation as a determinant of growth substrate specificity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042531-0
2011-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/89.html?itemId=/content/journal/micro/10.1099/mic.0.042531-0&mimeType=html&fmt=ahah

References

  1. Armengaud J., Happe B., Timmis K. N. 1998; Genetic analysis of dioxin dioxygenase of Sphingomonas sp. strain RW1: catabolic genes dispersed on the genome. J Bacteriol 180:3954–3966
    [Google Scholar]
  2. Baker G. B., Coutts R. T., Holt A. 1994; Derivatization with acetic anhydride: applications to the analysis of biogenic-amines and psychiatric drugs by gas-chromatography and mass-spectrometry. J Pharmacol Toxicol Methods 31:141–148
    [Google Scholar]
  3. Bartels I., Knackmuss H. J., Reineke W. 1984; Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505
    [Google Scholar]
  4. Busch A., Lacal J., Martos A., Ramos J. L., Krell T. 2007; Bacterial sensor kinase TodS interacts with agonistic and antagonistic signals. Proc Natl Acad Sci U S A 104:13774–13779
    [Google Scholar]
  5. Cerdan P., Wasserfallen A., Rekik M., Timmis K. N., Harayama S. 1994; Substrate-specificity of catechol 2,3-dioxygenase encoded by TOL plasmid PWWO of Pseudomonas putida and its relationship to cell growth. J Bacteriol 176:6074–6081
    [Google Scholar]
  6. Cho M. C., Kang D. O., Yoon B. D., Lee K. 2000; Toluene degradation pathway from Pseudomonas putida F1: substrate specificity and gene induction by 1-substituted benzenes. J Ind Microbiol Biotechnol 25:163–170
    [Google Scholar]
  7. Choi E. N., Cho M. C., Kim Y., Kim C. K., Lee K. 2003; Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS , which recruit a ring-fission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149:795–805
    [Google Scholar]
  8. de Lorenzo V., Timmis K. N. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 -derived and Tn 10 -derived minitransposons. Methods Enzymol 235:386–405
    [Google Scholar]
  9. Díaz E. 2004; Bacterial degradation of aromatic pollutants: a paradigm of metabolic versatility. Int Microbiol 7:173–180
    [Google Scholar]
  10. Focht D. D. 1994; Microbial procedures for biodegradation research. In Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties pp 407–426 Edited by Weaver R. W., Angle J. S., Bottomley P. S. Madison, WI: Soil Science Society of America;
    [Google Scholar]
  11. Furukawa K., Hirose J., Suyama A., Zaiki T., Hayashida S. 1993; Gene components responsible for discrete substrate specificity in the metabolism of biphenyl ( bph operon) and toluene ( tod operon. J Bacteriol 175:5224–5232
    [Google Scholar]
  12. Fushinobu S., Saku T., Hidaka M., Jun S. Y., Nojiri H., Yamane H., Shoun H., Omori T., Wakagi T. 2002; Crystal structures of a meta -cleavage product hydrolase from Pseudomonas fluorescens IP01 (CumD) complexed with cleavage products. Protein Sci 11:2184–2195
    [Google Scholar]
  13. Gibson D. T., Koch J. R., Kallio R. E. 1968; Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymatic formation of catechol from benzene. Biochemistry 7:2653–2662
    [Google Scholar]
  14. Habe H., Morii K., Fushinobu S., Nam J. W., Ayabe Y., Yoshida T., Wakagi T., Yamane H., Nojiri H. other authors 2003; Crystal structure of a histidine-tagged serine hydrolase involved in the carbazole degradation (CarC enzyme. Biochem Biophys Res Commun 303:631–639
    [Google Scholar]
  15. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  16. Huang J. Z., Schell M. A. 1991; In vivo interactions of the NahR transcriptional activator with its target sequences: inducer-mediated changes resulting in transcription activation. J Biol Chem 266:10830–10838
    [Google Scholar]
  17. Hugo N., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y. 1998; A novel [2Fe-2S] ferredoxin from Pseudomonas putida mt-2 promotes the reductive reactivation of catechol 2,3-dioxygenase. J Biol Chem 273:9622–9629
    [Google Scholar]
  18. Hugo N., Meyer C., Armengaud J., Gaillard J., Timmis K. N., Jouanneau Y. 2000; Characterization of three XylT-like [2Fe-2S] ferredoxins associated with catabolism of cresols or naphthalene: evidence for their involvement in catechol dioxygenase reactivation. J Bacteriol 182:5580–5585
    [Google Scholar]
  19. Jiang H. Y., Parales R. E., Lynch N. A., Gibson D. T. 1996; Site-directed mutagenesis of conserved amino acids in the alpha subunit of toluene dioxygenase: potential mononuclear non-heme iron coordination sites. J Bacteriol 178:3133–3139
    [Google Scholar]
  20. Jiang H. Y., Parales R. E., Gibson D. T. 1999; The alpha subunit of toluene dioxygenase from Pseudomonas putida F1 can accept electrons from reduced ferredoxin (TOL) but is catalytically inactive in the absence of the beta subunit. Appl Environ Microbiol 65:315–318
    [Google Scholar]
  21. Kim E., Zylstra G. J. 1999; Functional analysis of genes involved in biphenyl, naphthalene, phenanthrene, and m-xylene degradation by Sphingomonas yanoikuyae B1. J Ind Microbiol Biotechnol 23:294–302
    [Google Scholar]
  22. Klecka G. M., Gibson D. T. 1981; Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Appl Environ Microbiol 41:1159–1165
    [Google Scholar]
  23. Kovach M. E., Elzer P. H., Hill D. S., Robertson G. T., Farris M. A., Roop R. M. II, Peterson K. M. 1995; Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176
    [Google Scholar]
  24. Kroll D. J., Abdelhafiz H. A., Marcell T., Simpson S., Chen C. Y., Gutierrezhartmann A., Lustbader J. W., Hoeffler J. P. 1993; A multifunctional prokaryotic protein expression system: overproduction, affinity purification, and selective detection. DNA Cell Biol 12:441–453
    [Google Scholar]
  25. Lacal J., Busch A., Guazzaroni M. E., Krell T., Ramos J. L. 2006; The TodS–TodT two-component regulatory system recognizes a wide range of effectors and works with DNA-bending proteins. Proc Natl Acad Sci U S A 103:8191–8196
    [Google Scholar]
  26. Lacal J., Guazzaroni M. E., Busch A., Krell T., Ramos J. L. 2008; Hierarchical binding of the TodT response regulator to its multiple recognition sites at the tod pathway operon promoter. J Mol Biol 376:325–337
    [Google Scholar]
  27. Laemmli C. M., Leveau J. H. J., Zehnder A. J. B., van der Meer J. R. 2000; Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4. J Bacteriol 182:4165–4172
    [Google Scholar]
  28. Lau P. C., Wang Y., Patel A., Labbe D., Bergeron H., Brousseau R., Konishi Y., Rawlings M. 1997; A bacterial basic region leucine zipper histidine kinase regulating toluene degradation. Proc Natl Acad Sci U S A 94:1453–1458
    [Google Scholar]
  29. Menn F. M., Zylstra G. J., Gibson D. T. 1991; Location and sequence of the todF gene encoding 2-hydroxy-6-oxohepta-2,4-dienoate hydrolase in Pseudomonas putida F1. Gene 104:91–94
    [Google Scholar]
  30. Mooney A., Ward P. G., O'Connor K. E. 2006; Microbial degradation of styrene: biochemistry, molecular genetics, and perspectives for biotechnological applications. Appl Microbiol Biotechnol 72:1–10
    [Google Scholar]
  31. Mosqueda G., Ramos-Gonzalez M. I., Ramos J. L. 1999; Toluene metabolism by the solvent-tolerant Pseudomonas putida DOT-T1 strain, and its role in solvent impermeabilization. Gene 232:69–76
    [Google Scholar]
  32. Müller T. A., Werlen C., Spain J., van der Meer J. R. 2003; Evolution of a chlorobenzene degradative pathway among bacteria in a contaminated groundwater mediated by a genomic island in Ralstonia . Environ Microbiol 5:163–173
    [Google Scholar]
  33. Nandhagopal N., Yamada A., Hatta T., Masai E., Fukuda M., Mitsui Y., Senda T. 2001; Crystal structure of 2-hydroxyl-6-oxo-6-phenylhexa-2,4-dienoic acid (HPDA) hydrolase (BphD enzyme) from the Rhodococcus sp. strain RHA1 of the PCB degradation pathway. J Mol Biol 309:1139–1151
    [Google Scholar]
  34. Ohta Y., Maeda M., Kudo T. 2001; Pseudomonas putida CE2010 can degrade biphenyl by a mosaic pathway encoded by the tod operon and cmtE , which are identical to those of P. putida F1 except for a single base difference in the operator–promoter region of the cmt operon. Microbiology 147:31–41
    [Google Scholar]
  35. Park W., Madsen E. L. 2004; Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil. Appl Microbiol Biotechnol 66:209–216
    [Google Scholar]
  36. Pérez-Pantoja D., Ledger T., Pieper D. H., Gonzalez B. 2003; Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–1542
    [Google Scholar]
  37. Polissi A., Harayama S. 1993; In vivo reactivation of catechol 2,3-dioxygenase mediated by a chloroplast-type ferredoxin: a bacterial strategy to expand the substrate-specificity of aromatic degradative pathways. EMBO J 12:3339–3347
    [Google Scholar]
  38. Powlowski J., Shingler V. 1994; Genetics and biochemistry of phenol degradation by Pseudomonas sp. CF600. Biodegradation 5:219–236
    [Google Scholar]
  39. Ramos J. L., Wasserfallen A., Rose K., Timmis K. N. 1987; Redesigning metabolic routes: manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596
    [Google Scholar]
  40. Rojo F., Pieper D. H., Engesser K. H., Knackmuss H. J., Timmis K. N. 1987; Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398
    [Google Scholar]
  41. Schweigert N., Zehnder A. J. B., Eggen R. I. L. 2001; Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91
    [Google Scholar]
  42. Seah S. Y. K., Terracina G., Bolin J. T., Riebel P., Snieckus V., Eltis L. D. 1998; Purification and preliminary characterization of a serine hydrolase involved in the microbial degradation of polychlorinated biphenyls. J Biol Chem 273:22943–22949
    [Google Scholar]
  43. Seah S. Y. K., Labbe G., Nerdinger S., Johnson M. R., Snieckus V., Eltis L. D. 2000; Identification of a serine hydrolase as a key determinant in the microbial degradation of polychlorinated biphenyls. J Biol Chem 275:15701–15708
    [Google Scholar]
  44. Shingler V., Powlowski J., Marklund U. 1992; Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J Bacteriol 174:711–724
    [Google Scholar]
  45. Trefault N., De la Iglesia R., Molina A. M., Manzano M., Ledger T., Pérez-Pantoja D., Sanchez M. A., Stuardo M., Gonzalez B. 2004; Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668
    [Google Scholar]
  46. Vaillancourt F. H., Labbe G., Drouin N. M., Fortin P. D., Eltis L. D. 2002; The mechanism-based inactivation of 2,3-dihydroxybiphenyl 1,2-dioxygenase by catecholic substrates. J Biol Chem 277:2019–2027
    [Google Scholar]
  47. Vaillancourt F. H., Bolin J. T., Eltis L. D. 2006; The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267
    [Google Scholar]
  48. van der Meer J. R., Werlen C., Nishino S. F., Spain J. C. 1998; Evolution of a pathway for chlorobenzene metabolism leads to natural attenuation in contaminated groundwater. Appl Environ Microbiol 64:4185–4193
    [Google Scholar]
  49. Ward G., Parales R. E., Dosoretz C. G. 2004; Biocatalytic synthesis of polycatechols from toxic aromatic compounds. Environ Sci Technol 38:4753–4757
    [Google Scholar]
  50. Watanabe T., Inoue R., Kimura N., Furukawa K. 2000; Versatile transcription of biphenyl catabolic bph operon in Pseudomonas pseudoalcaligenes KF707. J Biol Chem 275:31016–31023
    [Google Scholar]
  51. Watanabe T., Fujihara H., Furukawa K. 2003; Characterization of the second LysR-type regulator in the biphenyl catabolic gene cluster of Pseudomonas pseudoalcaligenes KF707. J Bacteriol 185:3575–3582
    [Google Scholar]
  52. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  53. Yeh W. K., Gibson D. T., Liu T. N. 1977; Toluene dioxygenase: multicomponent enzyme system. Biochem Biophys Res Commun 78:401–410
    [Google Scholar]
  54. Zylstra G. J., Gibson D. T. 1989; Toluene degradation by Pseudomonas putida F1: Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli . J Biol Chem 264:14940–14946
    [Google Scholar]
  55. Zylstra G. J., McCombie W. R., Gibson D. T., Finette B. A. 1988; Toluene degradation by Pseudomonas putida F1: genetic organization of the tod operon. Appl Environ Microbiol 54:1498–1503
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042531-0
Loading
/content/journal/micro/10.1099/mic.0.042531-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed