1887

Abstract

Both and utilize arginine as an energy source via the arginine dihydrolase (ADH) pathway. It has been previously demonstrated that forms a stable intracellular relationship with ; hence, in this study we examined the interaction of two localized ADH pathways by comparing strain SS22 with the laboratory-generated strain SS22-MOZ2 infected with MOZ2. The presence of resulted in an approximately 16-fold increase in intracellular ornithine and a threefold increase in putrescine, compared with control cultures. No change in the activity of enzymes of the ADH pathway could be demonstrated in SS22-MOZ2 compared with the parent SS22, and the increased production of ornithine could be attributed to the presence of Using metabolic flow analysis it was determined that the elasticity of enzymes of the ADH pathway in SS22-MOZ2 was unchanged compared with the parent SS22; however, the elasticity of ornithine decarboxylase (ODC) in SS22 was small, and it was doubled in SS22-MOZ2 cells. The potential benefit of this relationship to both and is discussed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042192-0
2010-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3734.html?itemId=/content/journal/micro/10.1099/mic.0.042192-0&mimeType=html&fmt=ahah

References

  1. Blanchard, A., Yanez, A., Dybvyg, K., Watson, H. L., Griffiths, G. & Cassel, G. H. ( 1993; ). Evaluation of intraspecies genetic variation within the 16S rRNA gene of M. hominis and detection by PCR. J Clin Microbiol 31, 1358–1361.
    [Google Scholar]
  2. Boyde, T. R. & Rahmatullah, M. ( 1980; ). Optimization of conditions for the colorimetric determination of citrulline, using diacetyl monoxime. Anal Biochem 107, 424–431.[CrossRef]
    [Google Scholar]
  3. Carlton, J. M., Hirt, R. P., Silva, J. C., Delcher, A. L., Schatz, M., Zhao, Q., Wortman, J. R., Bidwell, S. L., Alsmark, U. C. & other authors ( 2007; ). Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315, 207–212.[CrossRef]
    [Google Scholar]
  4. Chen, K. C., Amsel, R., Eschenbach, D. A. & Holmes, K. K. ( 1982; ). Biochemical determination of vaginitis: determination of diamines in vaginal fluid. J Infect Dis 145, 337–345.[CrossRef]
    [Google Scholar]
  5. Cornish-Bowden, A. ( 2004; ). Fundamentals of Enzyme Kinetics, 3rd edn. London. : Portland Press.
    [Google Scholar]
  6. Das, K., Butler, G. H., Kwiatkowski, V., Clark, A. D., Jr, Yadav, P. & Arnold, E. ( 2004; ). Crystal structure of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism. Structure 12, 657–667.[CrossRef]
    [Google Scholar]
  7. Dessì, D., Delogu, G., Emonte, E., Catania, M. R., Fiori, P. L. & Rappelli, P. ( 2005; ). Long-term survival and intracellular replication of Mycoplasma hominis in Trichomonas vaginalis cells: potential role of the protozoon in transmitting bacterial infection. Infect Immun 73, 1180–1186.[CrossRef]
    [Google Scholar]
  8. Diamond, L. S. ( 1957; ). The establishment of various trichomonads of animals and man in axenic cultures. J Parasitol 43, 488–490.
    [Google Scholar]
  9. Dillon, B. J., Holtsberg, F. W., Ensor, C. M., Bomalaski, J. S. & Clark, M. A. ( 2002; ). Biochemical characterization of the arginine degrading enzymes arginase and arginine deiminase and their effect on nitric oxide production. Med Sci Monit 8, BR248–BR253.
    [Google Scholar]
  10. Dolezal, P., Vánacová, S., Tachezy, J. & Hrdy, I. ( 2004; ). Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene 329, 81–92.[CrossRef]
    [Google Scholar]
  11. Driessen, A. J., Poolman, B., Kiewiet, R. & Konings, W. ( 1987; ). Arginine transport in Streptococcus lactis is catalyzed by a cationic exchanger. Proc Natl Acad Sci U S A 84, 6093–6097.[CrossRef]
    [Google Scholar]
  12. Fell, D. ( 1997; ). Measuring control coefficients. In Frontiers in Metabolism 2: Understanding the Control of Metabolism, pp. 135–195. Edited by Snell, K.. London. : Portland Press.
    [Google Scholar]
  13. Fenske, J. D. & Kenny, G. E. ( 1976; ). Role of arginine deiminase in growth of Mycoplasma hominis. J Bacteriol 126, 501–510.
    [Google Scholar]
  14. Griswold, A., Chen, Y. Y., Snyder, J. A. & Burne, R. A. ( 2004; ). Characterization of the arginine deiminase operon in Streptococcus rattus FA-1. Appl Environ Microbiol 70, 1321–1327.[CrossRef]
    [Google Scholar]
  15. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  16. Linstead, D. & Cranshaw, M. A. ( 1983; ). The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis. Mol Biochem Parasitol 8, 241–252.[CrossRef]
    [Google Scholar]
  17. Lowe, P. N. & Rowe, A. F. ( 1986; ). Aminotransferase activity in Trichomonas vaginalis. Mol Biochem Parasitol 21, 65–74.[CrossRef]
    [Google Scholar]
  18. Lu, X., Galkin, A., Herzberg, O. & Dunaway-Mariano, D. ( 2004; ). Arginine deiminase uses an active-site cysteine in nucleophilic catalysis of l-arginine hydrolysis. J Am Chem Soc 126, 5374–5375.[CrossRef]
    [Google Scholar]
  19. Noh, E. J., Kang, S. W., Shin, Y. J., Kim, D. C., Park, I. S., Kim, M. Y., Chun, B. G. & Min, B. H. ( 2002; ). Characterization of Mycoplasma arginine deiminase expressed in E. coli and inhibitory regulation of nitric oxide synthesis. Mol Cells 13, 137–143.
    [Google Scholar]
  20. Pereyre, S., Sirand-Pugnet, P., Bevan, L., Charron, A., Renaudin, H., Barre, A., Avenaud, P., Jacob, D., Couloux, A. & other authors ( 2009; ). Life on arginine for Mycoplasma hominis. Clues from its minimal genome and comparison with other human urogenital mycoplasmas. PLoS Genet 5, e1000677.[CrossRef]
    [Google Scholar]
  21. Rappelli, P., Addis, M. F., Carta, F. & Fiori, P. L. ( 1998; ). Mycoplasma hominis parasitism of Trichomonas vaginalis. Lancet 352, 1286.[CrossRef]
    [Google Scholar]
  22. Ringqvist, E., Palm, J. E., Skarin, H., Hehl, A. B., Weiland, M., Davids, B. J., Reiner, D. S., Griffiths, W. J., Eckmann, L. & other authors ( 2008; ). Release of metabolic enzymes by Giardia in response to interaction with intestinal epithelial cells. Mol Biochem Parasitol 159, 85–91.[CrossRef]
    [Google Scholar]
  23. Sarti, P., Fiori, P. L., Forte, E., Rappelli, P., Teixeira, M., Mastronicola, D., Sanciu, G., Giuffré, A. & Brunori, M. ( 2004; ). Trichomonas vaginalis degrades nitric oxide and expresses a flavorubredoxin-like protein: a new pathogenic mechanism? Cell Mol Life Sci 61, 618–623.[CrossRef]
    [Google Scholar]
  24. Schofield, P. J., Costello, M., Edwards, M. R. & O'Sullivan, W. J. ( 1990; ). The arginine dihydrolase pathway is present in Giardia intestinalis. Int J Parasitol 20, 697–699.[CrossRef]
    [Google Scholar]
  25. Stamatakis, A. ( 2006; ). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.[CrossRef]
    [Google Scholar]
  26. Swofford, D. L. ( 1998; ). Phylogenetic analysis using parsimony (paup), version 4. Sunderland, MA: Sinauer Associates.
  27. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  28. Touz, M. C., Ropolo, A. S., Rivero, M. R., Vranych, C. V., Conrad, J. T., Svard, S. G. & Nash, T. E. ( 2008; ). Arginine deiminase has multiple regulatory roles in the biology of Giardia lamblia. J Cell Sci 121, 2930–2938.[CrossRef]
    [Google Scholar]
  29. Yarlett, N., Goldberg, B., Moharrami, M. A. & Bacchi, C. J. ( 1993; ). Trichomonas vaginalis: characterization of ornithine decarboxylase. Biochem J 293, 487–493.
    [Google Scholar]
  30. Yarlett, N., Lindmark, D. G., Goldberg, B., Moharrami, M. A. & Bacchi, C. J. ( 1994; ). Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus. J Eukaryot Microbiol 41, 554–559.[CrossRef]
    [Google Scholar]
  31. Yarlett, N., Martinez, M. P., Moharrami, M. A. & Tachezy, J. ( 1996; ). The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol 78, 117–125.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042192-0
Loading
/content/journal/micro/10.1099/mic.0.042192-0
Loading

Data & Media loading...

Supplements

[PDF](95 KB)

PDF

[PDF](51 KB)

PDF

[PDF](168 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error