1887

Abstract

Restricted to the genus , the Pht protein family comprises four members: PhtA, PhtB, PhtD and PhtE. This family has the potential to provide a protein candidate for incorporation in pneumococcal vaccines. Based on sequence analysis and on RT-PCR experiments, we show here that the genes are organized in tandem but that their expression, except that of , is monocistronic. PhtD, PhtE, PhtB and PhtA are present in 100, 97, 81 and 62 % of the strains, respectively, and, by analysing its sequence conservation across 107 pneumococcal strains, we showed that PhtD displays very little variability. To analyse the physiological function of these proteins, several mutants were constructed. The quadruple Pht-deficient mutant was not able to grow in a poor culture medium, but the addition of Zn or Mn restored its growth capacity. Moreover, the mRNA expression level increased when the culture medium was depleted in zinc. Therefore, we suggest that these proteins are zinc and manganese scavengers, and are able to store these metals and to release them when the bacterium faces an ion-restricted environment. The data also showed that this protein family, and more particularly PhtD, is a promising candidate to be incorporated into pneumococcal vaccines.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042184-0
2011-02-01
2020-07-09
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/336.html?itemId=/content/journal/micro/10.1099/mic.0.042184-0&mimeType=html&fmt=ahah

References

  1. Adamou J. E., Heinrichs J. H., Erwin A. L., Walsh W., Gayle T., Dormitzer M., Dagan R., Brewah Y. A., Barren P.. other authors 2001; Identification and characterization of a novel family of pneumococcal proteins that are protective against sepsis. Infect Immun69:949–958
    [Google Scholar]
  2. Ajdić D., McShan W. M., McLaughlin R. E., Savic G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S.. other authors 2002; Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. Proc Natl Acad Sci U S A99:14434–14439
    [Google Scholar]
  3. Ancsin J. B., Kisilevsky R.. 1996; Laminin interactions important for basement membrane assembly are promoted by zinc and implicate laminin zinc finger-like sequences. J Biol Chem271:6845–6851
    [Google Scholar]
  4. Bandyopadhyay K., Karmakar S., Ghosh A., Das P. K.. 2002; High affinity binding between laminin and laminin binding protein of Leishmania is stimulated by zinc and may involve laminin zinc-finger like sequences. Eur J Biochem269:1622–1629
    [Google Scholar]
  5. Beghetto E., Gargano N., Ricci S., Garufi G., Peppoloni S., Montagnani F., Oggioni M., Pozzi G., Felici F.. 2006; Discovery of novel Streptococcus pneumoniae antigens by screening a whole-genome λ -display library. FEMS Microbiol Lett262:14–21
    [Google Scholar]
  6. Blom A. M., Kask L., Ramesh B., Hillarp A.. 2003; Effects of zinc on factor I cofactor activity of C4b-binding protein and factor H. Arch Biochem Biophys418:108–118
    [Google Scholar]
  7. Brendel V., Trifonov E. N.. 1984; A computer algorithm for testing potential prokaryotic terminators. Nucleic Acids Res12:4411–4427
    [Google Scholar]
  8. Brenot A., Weston B. F., Caparon M. G.. 2007; A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes . Mol Microbiol63:1185–1196
    [Google Scholar]
  9. Bridy-Pappas A. E., Margolis M. B., Center K. J., Isaacman D. J.. 2005; Streptococcus pneumoniae : description of the pathogen, disease epidemiology, treatment, and prevention. Pharmacotherapy25:1193–1212
    [Google Scholar]
  10. Bunker V. W., Hinks L. J., Lawson M. S., Clayton B. E.. 1984; Assessment of zinc and copper status of healthy elderly people using metabolic balance studies and measurement of leucocyte concentrations. Am J Clin Nutr40:1096–1102
    [Google Scholar]
  11. Claverys J.-P.. 2001; A new family of high-affinity ABC manganese and zinc permeases. Res Microbiol152:231–243
    [Google Scholar]
  12. Cockayne A., Hill P. J., Powell N. B. L., Bishop K., Sims C., Williams P.. 1998; Molecular cloning of a 32-kilodalton lipoprotein component of a novel iron-regulated Staphylococcus epidermidis ABC transporter. Infect Immun66:3767–3774
    [Google Scholar]
  13. Dagan R., Engelhard D., Piccard E., Englehard D.. 1992; Epidemiology of invasive childhood pneumococcal infections in Israel. The Israeli Pediatric Bacteremia and Meningitis Group. JAMA268:3328–3332
    [Google Scholar]
  14. Dagan R., Käyhty H., Wuorimaa T., Yaich M., Bailleux F., Zamir O., Eskola J.. 2004; Tolerability and immunogenicity of an eleven valent mixed carrier Streptococcus pneumoniae capsular polysaccharide-diphtheria toxoid or tetanus protein conjugate vaccine in Finnish and Israeli infants. Pediatr Infect Dis J23:91–98
    [Google Scholar]
  15. Dintilhac A., Claverys J.-P.. 1997; The adc locus, which affects competence for genetic transformation in Streptococcus pneumoniae , encodes an ABC transporter with a putative lipoprotein homologous to a family of streptococcal adhesins. Res Microbiol148:119–131
    [Google Scholar]
  16. Dintilhac A., Alloing G., Granadel C., Claverys J.-P.. 1997; Competence and virulence of Streptococcus pneumoniae : Adc and PsaA mutants exhibit a requirement for Zn and Mn resulting from inactivation of putative ABC metal permeases. Mol Microbiol25:727–739
    [Google Scholar]
  17. Elsner A., Kreikemeyer B., Braun-Kiewnick A., Spellerberg B., Buttaro B. A., Podbielski A.. 2002; Involvement of Lsp, a member of the LraI-lipoprotein family in Streptococcus pyogenes , in eukaryotic cell adhesion and internalization. Infect Immun70:4859–4869
    [Google Scholar]
  18. Fedson D. C., Musher D. M.. 2004; Pneumococcal polysaccharide vaccines. In Vaccines, 4th edn. pp529–588 Edited by Plotkin S. A., Orenstein W. A.. Philadelphia, PA: Elsevier, Inc;
    [Google Scholar]
  19. Ferretti J. J., McShan W. M., Ajdić D., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N.. other authors 2001; Complete genome sequence of an M1 strain of Streptococcus pyogenes . Proc Natl Acad Sci U S A98:4658–4663
    [Google Scholar]
  20. Gagnon G., Vadeboncoeur C., Levesque R. C., Frenette M.. 1992; Cloning, sequencing and expression in Escherichia coli of the ptsI gene encoding enzyme I of the phosphoenolpyruvate: sugar phosphotransferase transport system from Streptococcus salivarius . Gene121:71–78
    [Google Scholar]
  21. Godfroid F., Hermand P., Verlant V., , Denoël P., Poolman J. T.. 2011; Preclinical evaluation of the Pht proteins as potential cross-protective pneumococcal vaccine antigens. Infect Immun79:238–245
    [Google Scholar]
  22. Hamel J., Charland N., Pineau I., Ouellet C., Rioux S., Martin D., Brodeur B. R.. 2004; Prevention of pneumococcal disease in mice immunized with conserved surface-accessible proteins. Infect Immun72:2659–2670
    [Google Scholar]
  23. Hanahan D.. 1985; Plasmid transformation by Simanis. In DNA Cloning pp109–135 Edited by Glover D. M.. London: IRL Press;
    [Google Scholar]
  24. Harlyk C., Mccourt J., Bordin G., Rodriguez A. R., van der Eeckhout A.. 1997; Determination of copper, zinc and iron in broncho-alveolar lavages by atomic absorption spectroscopy. J Trace Elem Med Biol11:137–142
    [Google Scholar]
  25. Hausdorff W. P., Feikin D. R., Klugman K. P.. 2005; Epidemiological differences among pneumococcal serotypes. Lancet Infect Dis5:83–93
    [Google Scholar]
  26. Hava D. L., Camilli A.. 2002; Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol Microbiol45:1389–1406
    [Google Scholar]
  27. Hoskins J., Alborn W. E., Arnold J., Blaszczak L. C., Burgett S., DeHoff B. S., Estrem S. T., Fritz L., Fu D.-J.. other authors 2001; Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol183:5709–5717
    [Google Scholar]
  28. Hostetter M. K.. 1999; Opsonic and nonopsonic interactions of C3 with Streptococcus pneumoniae . Microb Drug Resist5:85–89
    [Google Scholar]
  29. Jenkinson H. F.. 1994; Cell surface protein receptors in oral streptococci. FEMS Microbiol Lett121:133–140
    [Google Scholar]
  30. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessieres P., Bolotin A.. other authors 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature390:249–256
    [Google Scholar]
  31. Laemmli U. K.. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature227:680–685
    [Google Scholar]
  32. Livak K. J., Schmittgen T. D.. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25:402–408
    [Google Scholar]
  33. Loisel E., Jacquamet L., Serre L., Bauvois C., Ferrer J. L., Vernet T., Di Guilmi A. M., Durmort C.. 2008; AdcAII, a new pneumococcal Zn-binding protein homologous with ABC transporters: biochemical and structural analysis. J Mol Biol381:594–606
    [Google Scholar]
  34. Lynch J. P. III, Zhanel G. G.. 2005; Escalation of antimicrobial resistance among Streptococcus pneumoniae : implications for therapy. Semin Respir Crit Care Med26:575–616
    [Google Scholar]
  35. Maruvada R., Prasadarao N. V., Rubens C. E.. 2009; Acquisition of factor H by a novel surface protein on group B Streptococcus promotes complement degradation. FASEB J23:3967–3977
    [Google Scholar]
  36. Mbelle N., Huebner R. E., Wasas A. D., Kimura A., Chang I., Klugman K. P.. 1999; Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J Infect Dis180:1171–1176
    [Google Scholar]
  37. McCullers J. A., Tuomanen E. I.. 2001; Molecular pathogenesis of pneumococcal pneumonia. Front Biosci6:D877–D889
    [Google Scholar]
  38. Melin M., Di Paolo E., Tikkanen L., Jarva H., Neyt C., Kayhty H., Meri S., Poolman J., Vakevainen M.. 2010; Interaction of pneumococcal histidine triad proteins with human complement. Infect Immun78:2089–2098
    [Google Scholar]
  39. Morrison D. A., Jaurin B.. 1990; Streptococcus pneumoniae possesses canonical Escherichia coli (sigma 70) promoters. Mol Microbiol4:1143–1152
    [Google Scholar]
  40. Nunes S., Sá-Leão R., Pereira L. C., de Lencastre H.. 2008; Emergence of a serotype 1 Streptococcus pneumoniae lineage colonising healthy children in Portugal in the seven-valent conjugate vaccination era. Clin Microbiol Infect14:82–84
    [Google Scholar]
  41. Ogunniyi A. D., Grabowicz M., Briles D. E., Cook J., Paton J. C.. 2007; Development of a vaccine against invasive pneumococcal disease based on combinations of virulence proteins of Streptococcus pneumoniae . Infect Immun75:350–357
    [Google Scholar]
  42. Ogunniyi A. D., Grabowicz M., Mahdi L. K., Cook J., Gordon D. L., Sadlon T. A., Paton J. C.. 2009; Pneumococcal histidine triad proteins are regulated by the Zn2+-dependent repressor AdcR and inhibit complement deposition through the recruitment of complement factor H. FASEB J23:731–738
    [Google Scholar]
  43. Panina E. M., Mironov A. A., Gelfand M. S.. 2003; Comparative genomics of bacterial zinc regulons: enhanced ion transport, pathogenesis, and rearrangement of ribosomal proteins. Proc Natl Acad Sci U S A100:9912–9917
    [Google Scholar]
  44. Papp-Wallace K. M., Maguire M. E.. 2006; Manganese transport and the role of manganese in virulence. Annu Rev Microbiol60:187–209
    [Google Scholar]
  45. Peterson J. D., Umayam L. A., Dickinson T., Hickey E. K., White O.. 2001; The comprehensive microbial resource. Nucleic Acids Res29:123–125
    [Google Scholar]
  46. Ranasinghe C., Hobbs A. A.. 1998; A simple method to obtain the 5′ ends of mRNA sequences by direct ligation of cDNA–RNA hybrids to a plasmid vector. Tech Tips Online3:128–132
    [Google Scholar]
  47. Riboldi-Tunnicliffe A., Isaacs N. W., Mitchell T. J.. 2005; 1.2 Å crystal structure of the S. pneumoniae PhtA histidine triad domain a novel zinc binding fold. FEBS Lett579:5353–5360
    [Google Scholar]
  48. Rosenberg M., Court D.. 1979; Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet13:319–353
    [Google Scholar]
  49. Sicard A. M.. 1964; A new synthetic medium for Diplococcus pneumoniae , and its use for the study of reciprocal transformations at the amiA locus. Genetics50:31–44
    [Google Scholar]
  50. Singleton R. J., Hennessy T. W., Bulkow L. R., Hammitt L. L., Zulz T., Hurlburt D. A., Butler J. C., Rudolph K., Parkinson A.. 2007; Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA297:1784–1792
    [Google Scholar]
  51. Smart L. E., Dougall A. J., Girdwood R. W. A.. 1987; New 23-valent pneumococcal vaccine in relation to pneumococcal serotypes in systemic and non-systemic disease. J Infect14:209–215
    [Google Scholar]
  52. Spellerberg B., Rozdzinski E., Martin S., Weber-Heynemann J., Schnitzler N., , Lütticken R., Podbielski A.. 1999; Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infect Immun67:871–878
    [Google Scholar]
  53. Tettelin H., Nelson K. E., Paulsen I. T., Eisen J. A., Read T. D., Peterson S., Heidelberg J., DeBoy R. T., Haft D. H.. other authors 2001; Complete genome sequence of a virulent isolate of Streptococcus pneumoniae . Science293:498–506
    [Google Scholar]
  54. Towbin H., Staehelin T., Gordon J.. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A76:4350–4354
    [Google Scholar]
  55. Turner D. H., Sugimoto N., Freier S. M.. 1988; RNA structure prediction. Annu Rev Biophys Biophys Chem17:167–192
    [Google Scholar]
  56. Wizemann T. M., Heinrichs J. H., Adamou J. E., Erwin A. L., Kunsch C., Choi G. H., Barash S. C., Rosen C. A., Masure H. R., other authors Jr. 2001; Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection. Infect Immun69:1593–1598
    [Google Scholar]
  57. Yamamoto H., Uchiyama S., Nugroho F. A., Sekiguchi J.. 1997; A 23.4 kb segment at the 6 °–7 ° region of the Bacillus subtilis genome. Microbiology143:1317–1320
    [Google Scholar]
  58. Zhang Y., Masi A. W., Barniak V., Mountzouros K., Hostetter M. K., Green B. A.. 2001; Recombinant PhpA protein, a unique histidine motif-containing protein from Streptococcus pneumoniae , protects mice against intranasal pneumococcal challenge. Infect Immun69:3827–3836
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042184-0
Loading
/content/journal/micro/10.1099/mic.0.042184-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error