Evaluating the microbial diversity of an model of the human large intestine by phylogenetic microarray analysis Free

Abstract

A high-density phylogenetic microarray targeting small subunit rRNA (SSU rRNA) sequences of over 1000 microbial phylotypes of the human gastrointestinal tract, the HITChip, was used to assess the impact of faecal inoculum preparation and operation conditions on an model of the human large intestine (TIM-2). This revealed that propagation of mixed faecal donations for the production of standardized inocula has only a limited effect on the microbiota composition, with slight changes observed mainly within the Firmicutes. Adversely, significant shifts in several major groups of intestinal microbiota were observed after inoculation of the model. Hierarchical cluster analysis was able to show that samples taken throughout the inoculum preparation grouped with microbiota profiles observed for faecal samples of healthy adults. In contrast, the TIM-2 microbiota was distinct. While members of the Bacteroidetes and some groups within the Bacilli were increased in TIM-2 microbiota, a strong reduction in the relative abundance of other microbial groups, including spp., spp., and clusters IV and XIVa, was observed. The changes detected with the HITChip could be confirmed using denaturing gradient gel electrophoresis (DGGE) of SSU rRNA amplicons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.042044-0
2010-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3270.html?itemId=/content/journal/micro/10.1099/mic.0.042044-0&mimeType=html&fmt=ahah

References

  1. Andersson A. F., Lindberg M., Jakobsson H., Bäckhed F., Nyrén P., Engstrand L. 2008; Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS ONE 3:e2836
    [Google Scholar]
  2. Bäckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. 2005; Host-bacterial mutualism in the human intestine. Science 307:1915–1920
    [Google Scholar]
  3. Ben-Amor K., Heilig H. G., Smidt H., Vaughan E. E., Abee T., de Vos W. M. 2005; Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis. Appl Environ Microbiol 71:4679–4689
    [Google Scholar]
  4. Blanchard A. P., Kaiser R. J., Hood L. E. 1996; High-density oligonucleotide arrays. Biosens Bioelectron 11:687–690
    [Google Scholar]
  5. Booijink C. C. G. M. 2009; Analysis of diversity and function of the human small intestinal microbiota. PhD thesis Wageningen University; The Netherlands:
  6. Carter R. L., Morris R., Blashfield R. K. 1989; On the partitioning of squared Euclidean distance and its application in cluster analysis. Psychometrika 54:9–23
    [Google Scholar]
  7. Child M. W., Kennedy A., Walker A. W., Bahrami B., Macfarlane S., Macfarlane G. T. 2006; Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. FEMS Microbiol Ecol 55:299–310
    [Google Scholar]
  8. Claesson M. J., O'Sullivan O., Wang Q., Nikkilä J., Marchesi J. R., Smidt H., de Vos W. M., Ross R. P., O'Toole P. W. 2009; Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4:e6669
    [Google Scholar]
  9. Collins S. M., Denou E., Verdu E. F., Bercik P. 2009; The putative role of the intestinal microbiota in the irritable bowel syndrome. Dig Liver Dis 41:850–853
    [Google Scholar]
  10. Derrien M., Adawi D., Ahrné S., Jeppsson B., Molin G., Osman N., Stsepetova J., Vaughan E. E., de Vos W. M. other authors 2004; The intestinal mucosa as a habitat of the gut microbiota and a rational target for probiotic functionality and safety. Microb Ecol Health Dis 16:137–144
    [Google Scholar]
  11. Egert M., de Graaf A. A., Smidt H., de Vos W. M., Venema K. 2006; Beyond diversity: functional microbiomics of the human colon. Trends Microbiol 14:86–91
    [Google Scholar]
  12. Egert M., de Graaf A. A., Maathuis A., de Waard P., Plugge C. M., Smidt H., Deutz N. E., Dijkema C., de Vos W. M., Venema K. 2007; Identification of glucose-fermenting bacteria present in an in vitro model of the human intestine by RNA-stable isotope probing. FEMS Microbiol Ecol 60:126–135
    [Google Scholar]
  13. Fromin N., Hamelin J., Tarnawski S., Roesti D., Jourdain-Miserez K., Forestier N., Teyssier-Cuvelle S., Gillet F., Aragno M., Rossi P. 2002; Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ Microbiol 4:634–643
    [Google Scholar]
  14. Gibson G. R., Cummings J. H., Macfarlane G. T. 1988; Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 54:2750–2755
    [Google Scholar]
  15. Guschin D. Y., Mobarry B. K., Proudnikov D., Stahl D. A., Rittmann B. E., Mirzabekov A. D. 1997; Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl Environ Microbiol 63:2397–2402
    [Google Scholar]
  16. Häne B. G., Jäger K., Drexler H. G. 1993; The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis 14:967–972
    [Google Scholar]
  17. Heilig H. G., Zoetendal E. G., Vaughan E. E., Marteau P., Akkermans A. D. L., de Vos W. M. 2002; Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68:114–123
    [Google Scholar]
  18. Hope A. C. A. 1968; A simplified Monte Carlo significance test procedure. J R Stat Soc Series B Stat Methodol 30:582–598
    [Google Scholar]
  19. Hopkins M. J., Englyst H. N., Macfarlane S., Furrie E., Macfarlane G. T., McBain A. J. 2003; Degradation of cross-linked and non-cross-linked arabinoxylans by the intestinal microbiota in children. Appl Environ Microbiol 69:6354–6360
    [Google Scholar]
  20. Josephson K. L., Gerba C. P., Pepper I. L. 1993; Polymerase chain reaction detection of nonviable bacterial pathogens. Appl Environ Microbiol 59:3513–3515
    [Google Scholar]
  21. Konstantinov S. R., Smidt H., Akkermans A. D. L. 2005; Ecology and activity of clostridia in the intestine of mammals. In Handbook of Clostridia pp 785–794 Edited by Dürre P. Boca Raton, FL: CRC Press;
    [Google Scholar]
  22. Kovatcheva-Datchary P., Egert M., Maathuis A., Rajilić-Stojanović M., de Graaf A. A., Smidt H., de Vos W. M., Venema K. 2009a; Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environ Microbiol 11:914–926
    [Google Scholar]
  23. Kovatcheva-Datchary P., Zoetendal E. G., Venema K., de Vos W. M., Smidt H. 2009b; Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2:S9–S22
    [Google Scholar]
  24. Leitch E. C., Walker A. W., Duncan S. H., Holtrop G., Flint H. J. 2007; Selective colonization of insoluble substrates by human faecal bacteria. Environ Microbiol 9:667–679
    [Google Scholar]
  25. Lepš J., Šmilauer P. 2003 Multivariate Analysis of Ecological Data using CANOCO Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  26. Ley R. E. 2010; Obesity and the human microbiome. Curr Opin Gastroenterol 26:5–11
    [Google Scholar]
  27. Loy A., Bodrossy L. 2006; Highly parallel microbial diagnostics using oligonucleotide microarrays. Clin Chim Acta 363:106–119
    [Google Scholar]
  28. Macfarlane G. T., Macfarlane S. 2007; Models for intestinal fermentation: association between food components, delivery systems, bioavailability and functional interactions in the gut. Curr Opin Biotechnol 18:156–162
    [Google Scholar]
  29. Macfarlane G. T., Gibson G. R., Cummings J. H. 1992; Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72:57–64
    [Google Scholar]
  30. Macfarlane G. T., Macfarlane S., Gibson G. R. 1998; Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35:180–187
    [Google Scholar]
  31. Macfarlane S., Woodmansey E. J., Macfarlane G. T. 2005; Colonization of mucin by human intestinal bacteria and establishment of biofilm communities in a two-stage continuous culture system. Appl Environ Microbiol 71:7483–7492
    [Google Scholar]
  32. Minekus M., Smeets-Peeters M., Bernalier A., Marol-Bonnin S., Havenaar R., Marteau P., Alric M., Fonty G., Huis in't Veld J. H. 1999; A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products. Appl Microbiol Biotechnol 53:108–114
    [Google Scholar]
  33. Molly K., Woestyne M., Verstraete W. 1993; Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Appl Microbiol Biotechnol 39:254–258
    [Google Scholar]
  34. Muyzer G., de Waal E. C., Uitterlinden A. G. 1993; Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700
    [Google Scholar]
  35. Neufeld J. D., Mohn W. W., de Lorenzo V. 2006; Composition of microbial communities in hexachlorocyclohexane (HCH) contaminated soils from Spain revealed with a habitat-specific microarray. Environ Microbiol 8:126–140
    [Google Scholar]
  36. Nocker A., Cheung C.-Y., Campera A. K. 2006; Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 67:310–320
    [Google Scholar]
  37. Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R. I., Ludwig W., Backhaus H. 1996; Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643
    [Google Scholar]
  38. Oomen A. G., Hack A., Minekus M., Zeijdner E., Cornelis C., Schoeters G., Verstraete W., Van de Wiele T., Wragg J. other authors 2002; Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environ Sci Technol 36:3326–3334
    [Google Scholar]
  39. Palmer C., Bik E. M., Eisen M. B., Eckburg P. B., Sana T. R., Wolber P. K., Relman D. A., Brown P. O. 2006; Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 34:e5
    [Google Scholar]
  40. Possemiers S., Verthé K., Uyttendaele S., Verstraete W. 2004; PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49:495–507
    [Google Scholar]
  41. Probert H. M., Apajalahti J. H. A., Rautonen N., Stowell J., Gibson G. R. 2004; Polydextrose, lactitol, and fructo-oligosaccharide fermentation by colonic bacteria in a three-stage continuous culture system. Appl Environ Microbiol 70:4505–4511
    [Google Scholar]
  42. Qin J., Li R., Raes J., Arumugam M., Burgdorf K. S., Manichanh C., Nielsen T., Pons N., Levenez F. other authors 2010; A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65
    [Google Scholar]
  43. Rajilić-Stojanović M., Smidt H., de Vos W. M. 2007; Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9:2125–2136
    [Google Scholar]
  44. Rajilić-Stojanović M., Heilig H. G. H. J., Molenaar D., Kajander K., Surakka A., Smidt H., de Vos W. M. 2009; Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751
    [Google Scholar]
  45. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  46. Sanguinetti C. J., Dias Neto E., Simpson A. J. G. 1994; Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921
    [Google Scholar]
  47. Simpson E. H. 1949; Measurements of diversity. Nature 163:688
    [Google Scholar]
  48. Smoot L. M., Smoot J. C., Smidt H., Noble P. A., Konneke M., McMurry Z. A., Stahl D. A. 2005; DNA microarrays as salivary diagnostic tools for characterizing the oral cavity's microbial community. Adv Dent Res 18:6–11
    [Google Scholar]
  49. Storey J. D. 2003; The positive false discovery rate: a Bayesian interpretation and the q-value. Ann Stat 31:2013–2035
    [Google Scholar]
  50. Suau A., Bonnet R., Sutren M., Godon J.-J., Gibson G. R., Collins M. D., Doré J. 1999; Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65:4799–4807
    [Google Scholar]
  51. Tannock G. W. 1995 Normal Microflora: an Introduction to Microbes Inhabiting the Human Body London: Chapman & Hall;
    [Google Scholar]
  52. van de Wiele T. R., Boon N., Possemiers S., Jacobs H., Verstraete W. 2004; Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 51:143–153
    [Google Scholar]
  53. Van den Abbeele P., Grootaert C., Marzorati M., Possemiers S., Verstraete W., Gérard P., Rabot S., Bruneau A., El Aidy S. other authors 2010; The in vitro cultured gut microbiota is reproducible, colon-region specific and enriched in Bacteroidetes and Clostridium cluster IX. Appl Environ Microbiol 76:5237–5246
    [Google Scholar]
  54. van Nuenen M. H. M. C., Meyer P. D., Venema K. 2003; The effect of various inulins and Clostridium difficile on the metabolic activity of the human colonic microbiota in vitro. Microb Ecol Health Dis 15:137–144
    [Google Scholar]
  55. Venema K., van Nuenen M., Smeets-Peeters M., Minekus M., Havenaar R. 2000; TNO's in vitro large intestinal model: an excellent screening tool for functional food and pharmaceutical research. Nutrition/Ernährung 24:558–564
    [Google Scholar]
  56. Venema K., van Nuenen M. H. M. C., van den Heuvel E. G., Pool W., van der Vossen J. M. B. M. 2003; The effect of lactulose on the composition of the intestinal microbiota and short-chain fatty acid production in human volunteers and a computer-controlled model of the proximal large intestine. Microb Ecol Health Dis 15:94–105
    [Google Scholar]
  57. Venema K., Vermunt S. H. F., Brink E. J. 2005; d-Tagatose increases butyrate production by the colonic microbiota in healthy men and women. Microb Ecol Health Dis 17:47–57
    [Google Scholar]
  58. Wagner M., Smidt H., Loy A., Zhou J. 2007; Unravelling microbial communities with DNA-microarrays: challenges and future directions. Microb Ecol 53:498–506
    [Google Scholar]
  59. Weaver G. A., Krause J. A., Miller T. L., Wolin M. J. 1988; Short chain fatty-acid distributions of enema samples from a sigmoidoscopy population – an association of high acetate and low butyrate ratios with adenomatous polyps and colon cancer. Gut 29:1539–1543
    [Google Scholar]
  60. Zhou J. 2003; Microarrays for bacterial detection and microbial community analysis. Curr Opin Microbiol 6:288–294
    [Google Scholar]
  61. Zoetendal E. G., Akkermans A. D., Akkermans-van Vliet W. M., de Visser J. A. G. M., de Vos W. M. 2001; The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13:129–134
    [Google Scholar]
  62. Zoetendal E. G., Collier C. T., Koike S., Mackie R. I., Gaskins H. R. 2004; Molecular ecological analysis of the gastrointestinal microbiota: a review. J Nutr 134:465–472
    [Google Scholar]
  63. Zoetendal E. G., Vaughan E. E., de Vos W. M. 2006; A microbial world within us. Mol Microbiol 59:1639–1650
    [Google Scholar]
  64. Zoetendal E. G., Rajilić-Stojanović M., de Vos W. M. 2008; High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57:1605–1615
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.042044-0
Loading
/content/journal/micro/10.1099/mic.0.042044-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited Most Cited RSS feed