1887

Abstract

From birth onwards, the gastrointestinal (GI) tract of infants progressively acquires a complex range of micro-organisms. It is thought that by 2 years of age the GI microbial population has stabilized. Within the developmental period of the infant GI microbiota, weaning is considered to be most critical, as the infant switches from a milk-based diet (breast and/or formula) to a variety of food components. Longitudinal analysis of the biological succession of the infant GI/faecal microbiota is lacking. In this study, faecal samples were obtained regularly from 14 infants from 1 month to 18 months of age. Seven of the infants (including a set of twins) were exclusively breast-fed and seven were exclusively formula-fed prior to weaning, with 175 and 154 faecal samples, respectively, obtained from each group. Diversity and dynamics of the infant faecal microbiota were analysed by using fluorescence hybridization and denaturing gradient gel electrophoresis. Overall, the data demonstrated large inter- and intra-individual differences in the faecal microbiological profiles during the study period. However, the infant faecal microbiota merged with time towards a climax community within and between feeding groups. Data from the twins showed the highest degree of similarity both quantitatively and qualitatively. Inter-individual variation was evident within the infant faecal microbiota and its development, even within exclusively formula-fed infants receiving the same diet. These data can be of help to future clinical trials (e.g. targeted weaning products) to organize protocols and obtain a more accurate outline of the changes and dynamics of the infant GI microbiota.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041913-0
2010-11-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/11/3317.html?itemId=/content/journal/micro/10.1099/mic.0.041913-0&mimeType=html&fmt=ahah

References

  1. Abecia, L., Hoyles, L., Khoo, C., Frantz, N. & McCartney, A. L. ( 2010; ). Effects of a novel galactooligosaccharide on the faecal microbiota of healthy and inflammatory bowel disease cats during a randomized, double-blind, cross-over feeding study. Int J Probiotics Prebiotics 5, 61–68.
    [Google Scholar]
  2. Alm, J. S., Swartz, J., Björkstén, B., Engstrand, L., Engström, J., Kühn, I., Lilja, G., Möllby, R., Norin, E. & other authors ( 2002; ). An anthroposophic lifestyle and intestinal microflora in infancy. Pediatr Allergy Immunol 13, 402–411.[CrossRef]
    [Google Scholar]
  3. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. ( 2005; ). Host–bacterial mutualism in the human intestine. Science 307, 1915–1920.[CrossRef]
    [Google Scholar]
  4. Barcenilla, A., Pryde, S. E., Martin, J. C., Duncan, S. H., Stewart, C. S., Henderson, C. & Flint, H. J. ( 2000; ). Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl Environ Microbiol 66, 1654–1661.[CrossRef]
    [Google Scholar]
  5. Bourlioux, P., Koletzko, B., Guarner, F. & Braesco, V. ( 2003; ). The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine”, held in Paris, June 14, 2002. Am J Clin Nutr 78, 675–683.
    [Google Scholar]
  6. Cebra, J. J. ( 1999; ). Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69, 1046S–1051S.
    [Google Scholar]
  7. Duncan, S. H., Hold, G. L., Barcenilla, A., Stewart, C. S. & Flint, H. J. ( 2002; ). Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int J Syst Evol Microbiol 52, 1615–1620.[CrossRef]
    [Google Scholar]
  8. Fanaro, S., Chierici, R., Guerrini, P. & Vigi, V. ( 2003; ). Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 91, 48–55.
    [Google Scholar]
  9. Favier, C. F., Vaughan, E. E., De Vos, W. M. & Akkermans, A. D. L. ( 2002; ). Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68, 219–226.[CrossRef]
    [Google Scholar]
  10. Favier, C. F., de Vos, W. M. & Akkermans, A. D. L. ( 2003; ). Development of bacterial and bifidobacterial communities in feces of newborn babies. Anaerobe 9, 219–229.[CrossRef]
    [Google Scholar]
  11. Franks, A. H., Harmsen, H. J., Raangs, G. C., Jansen, G. J., Schut, F. & Welling, G. W. ( 1998; ). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. Appl Environ Microbiol 64, 3336–3345.
    [Google Scholar]
  12. Gorbach, S. L. ( 1990; ). Lactic acid bacteria and human health. Ann Med 22, 37–41.[CrossRef]
    [Google Scholar]
  13. Harmsen, H. J. M., Elfferich, P., Schut, F. & Welling, G. W. ( 1999; ). A 16S rRNA-targeted probe for detection of lactobacilli and enterococci in faecal samples by fluorescent in situ hybridization. Microb Ecol Health Dis 11, 3–12.[CrossRef]
    [Google Scholar]
  14. Harmsen, H. J. M., Wildeboer-Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G. & Welling, G. W. ( 2000a; ). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30, 61–67.[CrossRef]
    [Google Scholar]
  15. Harmsen, H. J. M., Wildeboer-Veloo, A. C., Grijpstra, J., Knol, J., Degener, J. E. & Welling, G. W. ( 2000b; ). Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. Appl Environ Microbiol 66, 4523–4527.[CrossRef]
    [Google Scholar]
  16. Hentges, D. J. ( 1993; ). The anaerobic microflora of the human body. Clin Infect Dis 16 (Suppl. 4), S175–S180.[CrossRef]
    [Google Scholar]
  17. Hopkins, M. J., Macfarlane, G. T., Furrie, E., Fite, A. & Macfarlane, S. ( 2005; ). Characterisation of intestinal bacteria in infant stools using real-time PCR and Northern hybridisation analyses. FEMS Microbiol Ecol 54, 77–85.[CrossRef]
    [Google Scholar]
  18. Kirjavainen, P. V., Apostolou, E., Arvola, T., Salminen, S. J., Gibson, G. R. & Isolauri, E. ( 2001; ). Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol Med Microbiol 32, 1–7.[CrossRef]
    [Google Scholar]
  19. Langendijk, P. S., Schut, F., Jansen, G. J., Raangs, G. C., Kamphuis, G. R., Wilkinson, M. H. & Welling, G. W. ( 1995; ). Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 3069–3075.
    [Google Scholar]
  20. Langhendries, J. P. ( 2006; ). Early bacterial colonisation of the intestine: why it matters? Arch Pediatr 13, 1526–1534.[CrossRef]
    [Google Scholar]
  21. Mackie, R. I., Sghir, A. & Gaskins, H. R. ( 1999; ). Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69, 1035S–1045S.
    [Google Scholar]
  22. Magne, F., Hachelaf, W., Suau, A., Boudraa, G., Mangin, I., Touhami, M., Bouziane-Nedjadi, K. & Pochart, P. ( 2006; ). A longitudinal study of infant faecal microbiota during weaning. FEMS Microbiol Ecol 58, 563–571.[CrossRef]
    [Google Scholar]
  23. Manz, W., Amann, R., Ludwig, W., Vancanneyt, M. & Schleifer, K. H. ( 1996; ). Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter-Bacteroides in the natural environment. Microbiology 142, 1097–1106.[CrossRef]
    [Google Scholar]
  24. Martín, R., Langa, S., Reviriego, C., Jiminez, E., Marin, M. L., Olivares, M., Boza, J., Jiminez, J., Fernandez, L. & other authors ( 2004; ). The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol 15, 121–127.[CrossRef]
    [Google Scholar]
  25. Mitsuoka, T. ( 1996; ). Intestinal flora and human health. Asia Pacific J Clin Nutr 5, 2–9.
    [Google Scholar]
  26. Mountzouris, K. C., McCartney, A. L. & Gibson, G. R. ( 2002; ). Intestinal microflora of human infants and current trends for its nutritional modulation. Br J Nutr 87, 405–420.
    [Google Scholar]
  27. Muyzer, G., de Waal, E. C. & Uitterlinden, A. G. ( 1993; ). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695–700.
    [Google Scholar]
  28. Orrhage, K. & Nord, C. E. ( 1999; ). Factors controlling the bacterial colonization of the intestine in breastfed infants. Acta Paediatr Suppl 88, 47–57.
    [Google Scholar]
  29. Palmer, C., Bik, E. M., Digiulio, D. B., Relman, D. A. & Brown, P. O. ( 2007; ). Development of the human infant intestinal microbiota. PLoS Biol 5, e177.[CrossRef]
    [Google Scholar]
  30. Poulsen, L. K., Lan, F., Kristensen, C. S., Hobolth, P., Molin, S. & Krogfelt, K. A. ( 1994; ). Spatial distribution of Escherichia coli in the mouse large intestine inferred from rRNA in situ hybridization. Infect Immun 62, 5191–5194.
    [Google Scholar]
  31. Roger, R. C., Costabile, A., Holland, D. T., Hoyles, L. & McCartney, A. L. ( 2010; ). Examination of faecal Bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156, 3329–3341.[CrossRef]
    [Google Scholar]
  32. Sanguinetti, C. J., Dias Neto, E. & Simpson, A. J. ( 1994; ). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17, 914–921.
    [Google Scholar]
  33. Satokari, R., Grönroos, T., Laitinen, K., Salminen, S. & Isolauri, E. ( 2009; ). Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48, 8–12.[CrossRef]
    [Google Scholar]
  34. Tannock, G. W., Fuller, R., Smith, S. L. & Hall, M. A. ( 1990; ). Plasmid profiling of members of the family Enterobacteriaceae, lactobacilli, and bifidobacteria to study the transmission of bacteria from mother to infant. J Clin Microbiol 28, 1225–1228.
    [Google Scholar]
  35. Vandenplas, Y. ( 2002; ). Oligosaccharides in infant formula. Br J Nutr 87 (Suppl. 2), S293–S296.[CrossRef]
    [Google Scholar]
  36. Waldram, A., Holmes, E., Wang, Y., Rantalainen, M., Wilson, I. D., Tuohy, K. M., McCartney, A. L., Gibson, G. R. & Nicholson, J. K. ( 2009; ). Top-down systems biology modelling of host metabotype-microbiome associations in obese rodents. J Proteome Res 8, 2361–2375.[CrossRef]
    [Google Scholar]
  37. Wold, A. E. & Adlerberth, I. ( 2000; ). Breast feeding and the intestinal microflora of the infant – implications for protection against infectious diseases. Adv Exp Med Biol 478, 77–93.
    [Google Scholar]
  38. Zoetendal, E. G., Rajilic-Stojanovic, M. & de Vos, W. M. ( 2008; ). High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57, 1605–1615.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041913-0
Loading
/content/journal/micro/10.1099/mic.0.041913-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error