1887

Abstract

In this work we have genetically defined an erythritol utilization locus in . A cosmid containing the locus was isolated by complementation of a transposon mutant and was subsequently mutagenized using Tn : : B20. The locus was found to consist of five transcriptional units, each of which was necessary for the utilization of erythritol. Genetic complementation experiments using genes putatively annotated as erythritol catabolic genes clearly showed that, of the 17 genes at this locus, six genes are not necessary for the utilization of erythritol as a sole carbon source. The remaining genes encode EryA, EryB, EryC and TpiB as well as an uncharacterized ABC-type transporter. Transport experiments using labelled erythritol showed that components of the ABC transporter are necessary for the uptake of erythritol. The locus also contains two regulators: EryD, a SorC class regulator, and SMc01615, a DeoR class regulator. Quantitative RT-PCR experiments showed that each of these regulators negatively regulates its own transcription. In addition, induction of the erythritol locus was dependent upon EryD and a product of erythritol catabolism. Further characterization of polar mutations revealed that in addition to erythritol, the locus contains determinants for adonitol and -arabitol utilization. The context of the mutations suggests that the locus is important for both the transport and catabolism of adonitol and -arabitol.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041905-0
2010-10-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2970.html?itemId=/content/journal/micro/10.1099/mic.0.041905-0&mimeType=html&fmt=ahah

References

  1. Adhya, S. L. & Shapiro, J. A. ( 1969; ). The galactose operon of E. coli K-12. I. Structural and pleiotropic mutations of the operon. Genetics 62, 231–247.
    [Google Scholar]
  2. Alexeyev, M. F. ( 1999; ). The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of Gram-negative bacteria. Biotechniques 26, 824–826.
    [Google Scholar]
  3. Barnett, M. J., Toman, C. J., Fisher, R. F. & Long, S. R. ( 2004; ). A dual-genome Symbiosis-Chip for coordinate study of signal exchange and development in a prokaryote–host interaction. Proc Natl Acad Sci U S A 101, 16636–16641.[CrossRef]
    [Google Scholar]
  4. Beringer, J. E., Beynon, J. L., Buchanan-Wollason, A. V. & Johnston, A. W. B. ( 1978; ). Transfer of the drug resistance transposon Tn5 to Rhizobium. Nature 276, 633–634.[CrossRef]
    [Google Scholar]
  5. Burkhardt, S., Jiménez de Bagüés, M. P., Liautard, J. P. & Kohler, S. ( 2005; ). Analysis of the behaviour of eryC mutants of Brucella suis attenuated in macrophages. Infect Immun 73, 6782–6790.[CrossRef]
    [Google Scholar]
  6. Clark, S. R. D., Oresnik, I. J. & Hynes, M. F. ( 2001; ). RpoN of Rhizobium leguminosarum bv. viciae strain VF39SM plays a central role in FnrN-dependent microaerobic regulation of genes involved in nitrogen fixation. Mol Gen Genet 264, 623–633.[CrossRef]
    [Google Scholar]
  7. de Sanctis, D., McVey, C. E., Enguita, F. J. & Carrondo, M. A. ( 2009; ). Crystal structure of the full-length sorbitol operon regulator SorC from Klebsiella pneumoniae: structural evidence for a novel transcriptional regulation mechanism. J Mol Biol 387, 759–770.[CrossRef]
    [Google Scholar]
  8. Finan, T. M., Hirsch, A. M., Leigh, J. A., Johansen, E., Kuldau, G. A., Deegan, S., Walker, G. C. & Signer, E. R. ( 1985; ). Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40, 869–877.[CrossRef]
    [Google Scholar]
  9. Finan, T. M., Kunkel, B., de Vos, G. F. & Signer, E. R. ( 1986; ). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167, 66–72.
    [Google Scholar]
  10. Fry, J., Wood, M. & Poole, P. S. ( 2001; ). Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant Microbe Interact 14, 1016–1025.[CrossRef]
    [Google Scholar]
  11. Galibert, F., Finan, T. M., Long, S. R., Puhler, A., Abola, P., Ampe, F., Barloy-Hubler, F., Barnett, M. J., Becker, A. & other authors ( 2001; ). The composite genome of the legume symbiont Sinorhizobium meliloti. Science 293, 668–672.[CrossRef]
    [Google Scholar]
  12. Glazebrook, J. & Walker, G. C. ( 1991; ). Genetic techniques in Rhizobium meliloti. Methods Enzymol 204, 398–418.
    [Google Scholar]
  13. Halling, S. M., Peterson-Burch, B. D., Bricker, B. J., Zuerner, R. L., Quing, Z., Li, L., Kapur, V., Alt, D. P. & Olsen, S. C. ( 2005; ). Completion of the genome sequence of Brucella abortus and comparison to the highly similar genomes of Brucella melitensis and Brucella suis. J Bacteriol 187, 2715–2726.[CrossRef]
    [Google Scholar]
  14. Hanahan, D. ( 1983; ). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557–580.[CrossRef]
    [Google Scholar]
  15. Heuel, H., Shakeri-Garakani, A., Turgut, S. & Lengeler, J. ( 1998; ). Genes for d-arabitol and ribitol catabolism from Klebsiella pneumonia. Microbiology 144, 1631–1639.[CrossRef]
    [Google Scholar]
  16. House, B. L., Mortimer, M. W. & Kahn, M. L. ( 2004; ). New recombination methods for Sinorhizobium meliloti genetics. Appl Environ Microbiol 70, 2806–2815.[CrossRef]
    [Google Scholar]
  17. Jacob, A. I., Adhamn, S. A. I., Capstick, D. S., Clark, S. R. D., Spence, T. & Charles, T. C. ( 2008; ). Mutational analysis of the Sinorhizobium meliloti short-chain dehydrogenase/reductase family reveals substantial contribution to symbiosis and catabolic diversity. Mol Plant Microbe Interact 21, 979–987.[CrossRef]
    [Google Scholar]
  18. Jones, J. D. G. & Gutterson, N. ( 1987; ). An efficient mobilizable cosmid vector and its use in rapid marker exchange in Pseudomonas fluorescens strain HV37a. Gene 61, 299–306.[CrossRef]
    [Google Scholar]
  19. Jordan, D. C. ( 1984; ). Rhizobiaceae. In Bergey's Manual of Systematic Bacteriology, 1st edn. pp. 234–241. Edited by Kreig, N. R.. Baltimore: Williams & Wilkins.
    [Google Scholar]
  20. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A. & other authors ( 2000; ). Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7, 331–338.[CrossRef]
    [Google Scholar]
  21. Köhler, S., Foulongne, V., Ouahrani-Bettache, S., Bourg, G., Teyssier, J., Ramuz, M. & Liautard, J. P. ( 2002; ). The analysis of the intramacrophagic virulome of Brucella suis deciphers the environment encountered by the pathogen inside the macrophage host cell. Proc Natl Acad Sci U S A 99, 15711–15716.[CrossRef]
    [Google Scholar]
  22. Krol, E. & Becker, A. ( 2004; ). Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011. Mol Genet Genomics 272, 1–17.
    [Google Scholar]
  23. Meade, H. M., Long, S. R., Ruvkin, G. B., Brown, S. E. & Ausubel, F. M. R. ( 1982; ). Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J Bacteriol 149, 114–122.
    [Google Scholar]
  24. Meyer, M. E. ( 1966; ). Metabolic characterization of the genus Brucella. V. Relationship of strain oxidation rate of i-erythritol to strain virulence for guinea pigs. J Bacteriol 92, 584–588.
    [Google Scholar]
  25. Meyer, M. E. ( 1967; ). Metabolic characterization of the genus Brucella. VI. Growth stimulation by i-erythritol compared with strain virulence for guinea pigs. J Bacteriol 93, 996–1000.
    [Google Scholar]
  26. Miller-Williams, M., Loewen, P. C. & Oresnik, I. J. ( 2006; ). Isolation of salt-sensitive mutants of Sinorhizobium meliloti strain Rm1021. Microbiology 152, 2049–2059.[CrossRef]
    [Google Scholar]
  27. Oresnik, I. J., Charles, T. C. & Finan, T. M. ( 1994; ). Second site mutations specifically suppress the Fix phenotype of Rhizobium meliloti ndvF mutations on alfalfa: identification of a conditional ndvF-dependent mucoid colony phenotype. Genetics 136, 1233–1243.
    [Google Scholar]
  28. Oresnik, I. J., Pacarynuk, L. A., O'Brien, S. A. P., Yost, C. K. & Hynes, M. F. ( 1998; ). Plasmid encoded catabolic genes in Rhizobium leguminosarum bv. trifolii: evidence for a plant-inducible rhamnose locus involved in competition for nodulation. Mol Plant Microbe Interact 11, 1175–1185.[CrossRef]
    [Google Scholar]
  29. Oresnik, I. J., Twelker, S. & Hynes, M. F. ( 1999; ). Cloning and characterization of a Rhizobium leguminosarum gene encoding a bacteriocin with similarities to RTX toxins. Appl Environ Microbiol 65, 2833–2840.
    [Google Scholar]
  30. Pickering, B. S. & Oresnik, I. J. ( 2008; ). Formate-dependent autotrophic growth in S. meliloti. J Bacteriol 190, 6409–6418.[CrossRef]
    [Google Scholar]
  31. Power, J. ( 1967; ). The l-rhamnose genetic system of E. coli K-12. Genetics 55, 557–568.
    [Google Scholar]
  32. Poysti, N. J. & Oresnik, I. J. ( 2007; ). Characterization of Sinorhizobium meliloti triose phosphate isomerase genes. J Bacteriol 189, 3445–3451.[CrossRef]
    [Google Scholar]
  33. Poysti, N. J., Loewen, E. D., Wang, Z. & Oresnik, I. J. ( 2007; ). Sinorhizobium meliloti pSymB carries genes necessary for arabinose transport and catabolism. Microbiology 153, 727–736.[CrossRef]
    [Google Scholar]
  34. Primrose, S. B. & Ronson, C. W. ( 1980; ). Polyol metabolism by Rhizobium trifolii. J Bacteriol 141, 1109–1114.
    [Google Scholar]
  35. Quandt, J. & Hynes, M. F. ( 1993; ). Versatile suicide vectors which allow direct selection for gene replacement in Gram-negative bacteria. Gene 127, 15–21.[CrossRef]
    [Google Scholar]
  36. Renalier, M. H., Batut, J., Ghai, J., Terzaghi, B., Gherardi, M., David, M., Garnerone, A. M., Vasse, J., Truchet, G. & other authors ( 1987; ). A new symbiotic cluster on the pSym megaplasmid of Rhizobium meliloti 2011 carries a functional fix gene repeat and a nod locus. J Bacteriol 169, 2231–2238.
    [Google Scholar]
  37. Richardson, J. S. & Oresnik, I. J. ( 2007; ). l-rhamnose transport in Rhizobium leguminosarum is dependent upon RhaK, a sugar kinase. J Bacteriol 189, 8437–8446.[CrossRef]
    [Google Scholar]
  38. Richardson, J. S., Hynes, M. F. & Oresnik, I. J. ( 2004; ). A genetic locus necessary for rhamnose uptake and catabolism in Rhizobium leguminosarum bv. trifolii. J Bacteriol 186, 8433–8442.[CrossRef]
    [Google Scholar]
  39. Richardson, J. S., Carpena, X., Switalta, J., Perez-Luque, R., Donald, L. J., Loewen, P. C. & Oresnik, I. J. ( 2008; ). RhaU of Rhizobium leguminosarum is a rhamnose mutarotase. J Bacteriol 190, 2903–2910.[CrossRef]
    [Google Scholar]
  40. Ronson, C. W. & Primrose, S. B. ( 1979; ). Effect of glucose on polyol metabolism by Rhizobium trifolii. J Bacteriol 139, 1075–1078.
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  42. Sangari, F. J., Grilló, M. J., Jiménez de Bagüés, M. P., González-Carreró, M. I., García-Lobo, J. M., Blasco, J. M. & Agüero, J. ( 1998; ). The defect in the metabolism of erythitol of Brucella abortus B19 vaccine strain is unrelated with its attenuated virulence in mice. Vaccine 16, 1640–1645.[CrossRef]
    [Google Scholar]
  43. Sangari, F. J., Agüero, J. & García-Lobo, J. M. ( 2000; ). The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Microbiology 146, 487–495.
    [Google Scholar]
  44. Schlüter, A., Patschkowski, T., Quandt, J., Selinger, B., Weidner, S., Krämer, M., Zhou, L., Hynes, M. F. & Priefer, U. ( 1997; ). Functional and regulatory analysis of the two copies of the fixNOQP operon of Rhizobium leguminosarum strain VF39. Mol Plant Microbe Interact 10, 605–616.[CrossRef]
    [Google Scholar]
  45. Schroeder, B. K., House, B. L., Mortimer, M. W., Yurgel, S. N., Maloney, S. C., Ward, K. L. & Kahn, M. L. ( 2005; ). Development of a functional genomics platform for Sinorhizobium meliloti: construction of an ORFeome. Appl Environ Microbiol 71, 5858–5864.[CrossRef]
    [Google Scholar]
  46. Schwedock, J. S. & Long, S. R. ( 1992; ). Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa. Genetics 132, 899–909.
    [Google Scholar]
  47. Simon, R., Priefer, U. & Pühler, A. ( 1983; ). A broad host range mobilization system for in vivo engineering: transposon mutagenesis in Gram-negative bacteria. Biotechniques 1, 784–791.
    [Google Scholar]
  48. Spaink, H. P. ( 2000; ). Root nodulation and infection factors produced by rhizobial bacteria. Annu Rev Microbiol 54, 257–288.[CrossRef]
    [Google Scholar]
  49. Sperry, J. F. & Robertson, D. C. ( 1975a; ). Inhibition of growth by erythritol catabolism in Brucella abortus. J Bacteriol 124, 391–397.
    [Google Scholar]
  50. Sperry, J. F. & Robertson, D. C. ( 1975b; ). Erythritol catabolism by Brucella abortus. J Bacteriol 121, 619–630.
    [Google Scholar]
  51. Stowers, M. D. ( 1985; ). Carbon metabolism in Rhizobium species. Annu Rev Microbiol 39, 89–108.[CrossRef]
    [Google Scholar]
  52. Triplett, E. W. & Sadowsky, M. ( 1992; ). Genetics of competition for nodulation of legumes. Annu Rev Microbiol 46, 399–428.[CrossRef]
    [Google Scholar]
  53. Vincent, J. M. ( 1970; ). The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Edited by Vincent, J. M.. Oxford: Blackwell Scientific.
    [Google Scholar]
  54. Wang, C., Meek, D. J., Panchal, P., Borluvka, N., Archibald, F. S., Driscoll, B. T. & Charles, T. C. ( 2006; ). Isolation of poly-hydroxybutyrate metabolism genes from complex microbial communities by phenotypic complementation of bacterial mutants. Appl Environ Microbiol 72, 384–391.[CrossRef]
    [Google Scholar]
  55. Wöhrl, B. M., Wehmeier, U. F. & Lengeler, J. W. ( 1990; ). Positive and negative regulation of expression of the l-sorbose (sor) operon by SorC in Klebsiella pneumoniae. Mol Gen Genet 224, 193–200.[CrossRef]
    [Google Scholar]
  56. Wood, W. A., McDonough, M. J. & Jacobs, L. B. ( 1961; ). Ribitol and d-arabitol utilization by Aerobacter aerogenes. J Biol Chem 236, 2190–2195.
    [Google Scholar]
  57. Yost, C. K., Rath, A. M., Noel, T. C. & Hynes, M. F. ( 2006; ). Characterization of genes involved in erythritol catabolism in Rhizobium leguminosarum bv. viciae. Microbiology 152, 2061–2074.[CrossRef]
    [Google Scholar]
  58. Young, J. P. W., Crossman, L. C., Johnston, A. W., Thomson, N. R., Ghazoui, Z. F., Hull, K. H., Wexler, M., Curson, A. R., Todd, J. D. & other authors ( 2006; ). The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol 7, R34.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041905-0
Loading
/content/journal/micro/10.1099/mic.0.041905-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error