1887

Abstract

serovar Dublin (. Dublin) is associated with enteritis, typhoid and abortion in cattle. Infections are acquired by the oral route, and the bacteria transit through varied anatomical and cellular niches to elicit systemic disease. . Dublin must therefore sense and respond to diverse extrinsic stimuli to control gene expression in a spatial and temporal manner. Two-component systems (TCSs) play key roles in such processes, and typically contain a membrane-associated sensor kinase (SK) that modifies a cognate response regulator. Analysis of the genome sequence of . Dublin identified 31 conserved SK genes. Each SK gene was separately disrupted by lambda Red recombinase-mediated insertion of transposons harbouring unique sequence tags. Calves were challenged with a pool of the mutants together with control strains of defined virulence by the oral and intravenous routes. Quantification of tagged mutants in output pools derived from various tissues and cannulated lymphatic vessels allowed the assignment of spatial roles for each SK following oral inoculation or when the intestinal barrier was bypassed by intravenous delivery. Mutant phenotypes were also assigned in cultured intestinal epithelial cells. Mutants with insertions in , , , or were significantly negatively selected at all enteric and systemic sites sampled after oral dosing. Mutants lacking , or were negatively selected at some but not all sites. After intravenous inoculation, only and mutants were significantly under-represented at systemic sites. The novel role of in intestinal colonization was confirmed by oral co-infection studies, with a mutant exhibiting modest but significant attenuation at a number of enteric sites. This is the first systematic analysis of the role of all TCSs in a highly relevant model of enteric fever. Spatial roles were assigned to eight . Dublin SKs, but most were not essential for intestinal or systemic infection of the target host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041830-0
2010-10-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3108.html?itemId=/content/journal/micro/10.1099/mic.0.041830-0&mimeType=html&fmt=ahah

References

  1. Bang, I. S., Kim, B. H., Foster, J. W. & Park, Y. K. ( 2000; ). OmpR regulates the stationary-phase acid tolerance response of Salmonella enterica serovar Typhimurium. J Bacteriol 182, 2245–2252.[CrossRef]
    [Google Scholar]
  2. Baraquet, C., Theraulaz, L., Guiral, M., Lafitte, D., Mejean, V. & Jourlin-Castelli, C. ( 2006; ). TorT, a member of a new periplasmic binding protein family, triggers induction of the Tor respiratory system upon trimethylamine N-oxide electron-acceptor binding in Escherichia coli. J Biol Chem 281, 38189–38199.[CrossRef]
    [Google Scholar]
  3. Barnes, P. D., Bergman, M. A., Mecsas, J. & Isberg, R. R. ( 2006; ). Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J Exp Med 203, 1591–1601.[CrossRef]
    [Google Scholar]
  4. Barrow, P. A. ( 1983; ). A note on a method to aid sampling populations for characteristics. J Appl Bacteriol 54, 311–312.[CrossRef]
    [Google Scholar]
  5. Bearson, B. L. & Bearson, S. M. ( 2008; ). The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog 44, 271–278.[CrossRef]
    [Google Scholar]
  6. Beier, D. & Gross, R. ( 2006; ). Regulation of bacterial virulence by two-component systems. Curr Opin Microbiol 9, 143–152.[CrossRef]
    [Google Scholar]
  7. Bijlsma, J. J. & Groisman, E. A. ( 2005; ). The PhoP/PhoQ system controls the intramacrophage type three secretion system of Salmonella enterica. Mol Microbiol 57, 85–96.[CrossRef]
    [Google Scholar]
  8. Bispham, J., Tripathi, B. N., Watson, P. R. & Wallis, T. S. ( 2001; ). Salmonella pathogenicity island 2 influences both systemic salmonellosis and Salmonella-induced enteritis in calves. Infect Immun 69, 367–377.[CrossRef]
    [Google Scholar]
  9. Bolton, A. J., Osborne, M. P., Wallis, T. S. & Stephen, J. ( 1999; ). Interaction of Salmonella choleraesuis, Salmonella dublin and Salmonella typhimurium with porcine and bovine terminal ileum in vivo. Microbiology 145, 2431–2441.
    [Google Scholar]
  10. Bott, M. ( 1997; ). Anaerobic citrate metabolism and its regulation in enterobacteria. Arch Microbiol 167, 78–88.[CrossRef]
    [Google Scholar]
  11. Brown, N. F., Vallance, B. A., Coombes, B. K., Valdez, Y., Coburn, B. A. & Finlay, B. B. ( 2005; ). Salmonella pathogenicity island 2 is expressed prior to penetrating the intestine. PLoS Pathog 1, e32.[CrossRef]
    [Google Scholar]
  12. Cano, D. A., Martinez-Moya, M., Pucciarelli, M. G., Groisman, E. A., Casadesus, J. & Garcia-Del Portillo, F. ( 2001; ). Salmonella enterica serovar Typhimurium response involved in attenuation of pathogen intracellular proliferation. Infect Immun 69, 6463–6474.[CrossRef]
    [Google Scholar]
  13. Cariss, S. J., Tayler, A. E. & Avison, M. B. ( 2008; ). Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli. J Bacteriol 190, 3930–3939.[CrossRef]
    [Google Scholar]
  14. Carnell, S. C., Bowen, A., Morgan, E., Maskell, D. J., Wallis, T. S. & Stevens, M. P. ( 2007; ). Role in virulence and protective efficacy in pigs of Salmonella enterica serovar Typhimurium secreted components identified by signature-tagged mutagenesis. Microbiology 153, 1940–1952.[CrossRef]
    [Google Scholar]
  15. Chaudhuri, R. R., Peters, S. E., Pleasance, S. J., Northen, H., Willers, C., Paterson, G. K., Cone, D. B., Allen, A. G., Owen, P. J. & other authors ( 2009; ). Comprehensive identification of Salmonella enterica serovar Typhimurium genes required for infection of BALB/c mice. PLoS Pathog 5, e1000529.[CrossRef]
    [Google Scholar]
  16. Cirillo, D. M., Valdivia, R. H., Monack, D. M. & Falkow, S. ( 1998; ). Macrophage-dependent induction of the Salmonella pathogenicity island 2 type III secretion system and its role in intracellular survival. Mol Microbiol 30, 175–188.[CrossRef]
    [Google Scholar]
  17. Conlin, C. A., Tan, S. L., Hu, H. & Segar, T. ( 2001; ). The apeE gene of Salmonella enterica serovar Typhimurium is induced by phosphate limitation and regulated by phoBR. J Bacteriol 183, 1784–1786.[CrossRef]
    [Google Scholar]
  18. Coombes, B. K., Coburn, B. A., Potter, A. A., Gomis, S., Mirakhur, K., Li, Y. & Finlay, B. B. ( 2005a; ). Analysis of the contribution of Salmonella pathogenicity islands 1 and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model of infectious enterocolitis. Infect Immun 73, 7161–7169.[CrossRef]
    [Google Scholar]
  19. Coombes, B. K., Wickham, M. E., Lowden, M. J., Brown, N. F. & Finlay, B. B. ( 2005b; ). Negative regulation of Salmonella pathogenicity island 2 is required for contextual control of virulence during typhoid. Proc Natl Acad Sci U S A 102, 17460–17465.[CrossRef]
    [Google Scholar]
  20. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  21. Espariz, M., Checa, S. K., Audero, M. E., Pontel, L. B. & Soncini, F. C. ( 2007; ). Dissecting the Salmonella response to copper. Microbiology 153, 2989–2997.[CrossRef]
    [Google Scholar]
  22. Feng, X., Oropeza, R. & Kenney, L. J. ( 2003; ). Dual regulation by phospho-OmpR of ssrA/B gene expression in Salmonella pathogenicity island 2. Mol Microbiol 48, 1131–1143.[CrossRef]
    [Google Scholar]
  23. Feng, X., Walthers, D., Oropeza, R. & Kenney, L. J. ( 2004; ). The response regulator SsrB activates transcription and binds to a region overlapping OmpR binding sites at Salmonella pathogenicity island 2. Mol Microbiol 54, 823–835.[CrossRef]
    [Google Scholar]
  24. Frost, A. J., Bland, A. P. & Wallis, T. S. ( 1997; ). The early dynamic response of the calf ileal epithelium to Salmonella typhimurium. Vet Pathol 34, 369–386.[CrossRef]
    [Google Scholar]
  25. García-Calderón, C. B., Casadesus, J. & Ramos-Morales, F. ( 2007; ). Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence. J Bacteriol 189, 6635–6644.[CrossRef]
    [Google Scholar]
  26. Geddes, K., Cruz, F. & Heffron, F. ( 2007; ). Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog 3, e196.[CrossRef]
    [Google Scholar]
  27. Giraud, A., Arous, S., De Paepe, M., Gaboriau-Routhiau, V., Bambou, J. C., Rakotobe, S., Lindner, A. B., Taddei, F. & Cerf-Bensussan, N. ( 2008; ). Dissecting the genetic components of adaptation of Escherichia coli to the mouse gut. PLoS Genet 4, e2.[CrossRef]
    [Google Scholar]
  28. Groisman, E. A. & Mouslim, C. ( 2006; ). Sensing by bacterial regulatory systems in host and non-host environments. Nat Rev Microbiol 4, 705–709.[CrossRef]
    [Google Scholar]
  29. Gunn, J. S. ( 2008; ). The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 16, 284–290.[CrossRef]
    [Google Scholar]
  30. Hansen-Wester, I. & Hensel, M. ( 2002; ). Genome-based identification of chromosomal regions specific for Salmonella spp. Infect Immun 70, 2351–2360.[CrossRef]
    [Google Scholar]
  31. Hensel, M., Shea, J. E., Gleeson, C., Jones, M. D., Dalton, E. & Holden, D. W. ( 1995; ). Simultaneous identification of bacterial virulence genes by negative selection. Science 269, 400–403.[CrossRef]
    [Google Scholar]
  32. Hensel, M., Shea, J. E., Waterman, S. R., Mundy, R., Nikolaus, T., Banks, G., Vazquez-Torres, A., Gleeson, C., Fang, F. C. & Holden, D. W. ( 1998; ). Genes encoding putative effector proteins of the type III secretion system of Salmonella pathogenicity island 2 are required for bacterial virulence and proliferation in macrophages. Mol Microbiol 30, 163–174.[CrossRef]
    [Google Scholar]
  33. Hensel, M., Hinsley, A. P., Nikolaus, T., Sawers, G. & Berks, B. C. ( 1999; ). The genetic basis of tetrathionate respiration in Salmonella typhimurium. Mol Microbiol 32, 275–287.[CrossRef]
    [Google Scholar]
  34. Higashitani, A., Nishimura, Y., Hara, H., Aiba, H., Mizuno, T. & Horiuchi, K. ( 1993; ). Osmoregulation of the fatty acid receptor gene fadL in Escherichia coli. Mol Gen Genet 240, 339–347.
    [Google Scholar]
  35. Humphreys, S., Rowley, G., Stevenson, A., Anjum, M. F., Woodward, M. J., Gilbert, S., Kormanec, J. & Roberts, M. ( 2004; ). Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium. Infect Immun 72, 4654–4661.[CrossRef]
    [Google Scholar]
  36. Island, M. D., Wei, B. Y. & Kadner, R. J. ( 1992; ). Structure and function of the uhp genes for the sugar phosphate transport system in Escherichia coli and Salmonella typhimurium. J Bacteriol 174, 2754–2762.
    [Google Scholar]
  37. Janausch, I. G., Zientz, E., Tran, Q. H., Kroger, A. & Unden, G. ( 2002; ). C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553, 39–56.[CrossRef]
    [Google Scholar]
  38. Jeon, J., Kim, H., Yun, J., Ryu, S., Groisman, E. A. & Shin, D. ( 2008; ). RstA-promoted expression of the ferrous iron transporter FeoB under iron-replete conditions enhances Fur activity in Salmonella enterica. J Bacteriol 190, 7326–7334.[CrossRef]
    [Google Scholar]
  39. Jones, B. D., Lee, C. A. & Falkow, S. ( 1992; ). Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect Immun 60, 2475–2480.
    [Google Scholar]
  40. Laubacher, M. E. & Ades, S. E. ( 2008; ). The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 190, 2065–2074.[CrossRef]
    [Google Scholar]
  41. Lawley, T. D., Chan, K., Thompson, L. J., Kim, C. C., Govoni, G. R. & Monack, D. M. ( 2006; ). Genome-wide screen for Salmonella genes required for long-term systemic infection of the mouse. PLoS Pathog 2, e11.[CrossRef]
    [Google Scholar]
  42. Leonhartsberger, S., Huber, A., Lottspeich, F. & Bock, A. ( 2001; ). The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. J Mol Biol 307, 93–105.[CrossRef]
    [Google Scholar]
  43. Lostroh, C. P. & Lee, C. A. ( 2001; ). The Salmonella pathogenicity island-1 type III secretion system. Microbes Infect 3, 1281–1291.[CrossRef]
    [Google Scholar]
  44. Lu, S., Killoran, P. B., Fang, F. C. & Riley, L. W. ( 2002; ). The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun 70, 451–461.[CrossRef]
    [Google Scholar]
  45. McClelland, M., Sanderson, K. E., Clifton, S. W., Latreille, P., Porwollik, S., Sabo, A., Meyer, R., Bieri, T., Harkins, C. R. & other authors ( 2004; ). Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36 , 1268–1274.[CrossRef]
    [Google Scholar]
  46. Merighi, M., Ellermeier, C. D., Slauch, J. M. & Gunn, J. S. ( 2005; ). Resolvase-in vivo expression technology analysis of the Salmonella enterica serovar Typhimurium PhoP and PmrA regulons in BALB/c mice. J Bacteriol 187, 7407–7416.[CrossRef]
    [Google Scholar]
  47. Merighi, M., Septer, A. N., Carroll-Portillo, A., Bhatiya, A., Porwollik, S., McClelland, M. & Gunn, J. S. ( 2009; ). Genome-wide analysis of the PreA/PreB (QseB/QseC) regulon of Salmonella enterica serovar Typhimurium. BMC Microbiol 9, 42.[CrossRef]
    [Google Scholar]
  48. Mizuno, T. ( 1997; ). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of Escherichia coli. DNA Res 4, 161–168.[CrossRef]
    [Google Scholar]
  49. Monaghan, P., Watson, P. R., Cook, H., Scott, L., Wallis, T. S. & Robertson, D. ( 2001; ). An improved method for preparing thick sections for immuno/histochemistry and confocal microscopy and its use to identify rare events. J Microsc 203, 223–226.[CrossRef]
    [Google Scholar]
  50. Mondragón, V., Franco, B., Jonas, K., Suzuki, K., Romeo, T., Melefors, O. & Georgellis, D. ( 2006; ). pH-dependent activation of the BarA-UvrY two-component system in Escherichia coli. J Bacteriol 188, 8303–8306.[CrossRef]
    [Google Scholar]
  51. Moreira, C. G., Weinshenker, D. & Sperandio, V. ( 2010; ). QseC mediates Salmonella enterica serovar Typhimurium virulence in vitro and in vivo. Infect Immun 78, 914–926.[CrossRef]
    [Google Scholar]
  52. Morgan, E., Campbell, J. D., Rowe, S. C., Bispham, J., Stevens, M. P., Bowen, A. J., Barrow, P. A., Maskell, D. J. & Wallis, T. S. ( 2004; ). Identification of host-specific colonization factors of Salmonella enterica serovar Typhimurium. Mol Microbiol 54, 994–1010.[CrossRef]
    [Google Scholar]
  53. Morgan, E., Bowen, A. J., Carnell, S. C., Wallis, T. S. & Stevens, M. P. ( 2007; ). SiiE is secreted by the Salmonella enterica serovar Typhimurium pathogenicity island 4-encoded secretion system and contributes to intestinal colonization in cattle. Infect Immun 75, 1524–1533.[CrossRef]
    [Google Scholar]
  54. Nishino, K., Nikaido, E. & Yamaguchi, A. ( 2007; ). Regulation of multidrug efflux systems involved in multidrug and metal resistance of Salmonella enterica serovar Typhimurium. J Bacteriol 189, 9066–9075.[CrossRef]
    [Google Scholar]
  55. Niu, S., Jiang, S. Q. & Hong, J. ( 1995; ). Salmonella typhimurium pgtB mutants conferring constitutive expression of phosphoglycerate transporter PgtP independent of PgtC. J Bacteriol 177, 4297–4302.
    [Google Scholar]
  56. Oshima, T., Aiba, H., Masuda, Y., Kanaya, S., Sugiura, M., Wanner, B. L., Mori, H. & Mizuno, T. ( 2002; ). Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol 46, 281–291.[CrossRef]
    [Google Scholar]
  57. Paulin, S. M., Watson, P. R., Benmore, A. R., Stevens, M. P., Jones, P. W., Villarreal-Ramos, B. & Wallis, T. S. ( 2002; ). Analysis of Salmonella enterica serotype-host specificity in calves: avirulence of S. enterica serotype Gallinarum correlates with bacterial dissemination from mesenteric lymph nodes and persistence in vivo. Infect Immun 70, 6788–6797.[CrossRef]
    [Google Scholar]
  58. Polarek, J. W., Williams, G. & Epstein, W. ( 1992; ). The products of the kdpDE operon are required for expression of the Kdp ATPase of Escherichia coli. J Bacteriol 174, 2145–2151.
    [Google Scholar]
  59. Pontel, L. B. & Soncini, F. C. ( 2009; ). Alternative periplasmic copper-resistance mechanisms in Gram negative bacteria. Mol Microbiol 73, 212–225.[CrossRef]
    [Google Scholar]
  60. Pullinger, G. D., Paulin, S. M., Charleston, B., Watson, P. R., Bowen, A. J., Dziva, F., Morgan, E., Villarreal-Ramos, B., Wallis, T. S. & Stevens, M. P. ( 2007; ). Systemic translocation of Salmonella enterica serovar Dublin in cattle occurs predominantly via efferent lymphatics in a cell-free niche and requires type III secretion system 1 (T3SS-1) but not T3SS-2. Infect Immun 75, 5191–5199.[CrossRef]
    [Google Scholar]
  61. Pullinger, G. D., Dziva, F., Charleston, B., Wallis, T. S. & Stevens, M. P. ( 2008; ). Identification of Salmonella enterica serovar Dublin-specific sequences by subtractive hybridization and analysis of their role in intestinal colonization and systemic translocation in cattle. Infect Immun 76, 5310–5321.[CrossRef]
    [Google Scholar]
  62. Pullinger, G. D., Carnell, S. C., Sharaff, F. F., van Diemen, P. M., Dziva, F., Morgan, E., Lyte, M., Freestone, P. P. & Stevens, M. P. ( 2010; ). Norepinephrine augments Salmonella enterica-induced enteritis in a manner associated with increased net replication but independent of the putative adrenergic sensor kinases QseC and QseE. Infect Immun 78, 372–380.[CrossRef]
    [Google Scholar]
  63. Rasko, D. A., Moreira, C. G., Lide, R., Reading, N. C., Ritchie, J. M., Waldor, M. K., Williams, N., Taussig, R., Wei, S. & other authors ( 2008; ). Targeting QseC signaling and virulence for antibiotic development. Science 321, 1078–1080.[CrossRef]
    [Google Scholar]
  64. Reading, N. C., Rasko, D. A., Torres, A. G. & Sperandio, V. ( 2009; ). The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A 106, 5889–5894.[CrossRef]
    [Google Scholar]
  65. Santiviago, C. A., Reynolds, M. M., Porwollik, S., Choi, S. H., Long, F., Andrews-Polymenis, H. L. & McClelland, M. ( 2009; ). Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 5, e1000477.[CrossRef]
    [Google Scholar]
  66. Shea, J. E., Hensel, M., Gleeson, C. & Holden, D. W. ( 1996; ). Identification of a virulence locus encoding a second type III secretion system in Salmonella typhimurium. Proc Natl Acad Sci U S A 93, 2593–2597.[CrossRef]
    [Google Scholar]
  67. Sheppard, M., Webb, C., Heath, F., Mallows, V., Emilianus, R., Maskell, D. & Mastroeni, P. ( 2003; ). Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol 5, 593–600.[CrossRef]
    [Google Scholar]
  68. Shin, S. & Park, C. ( 1995; ). Modulation of flagellar expression in Escherichia coli by acetyl phosphate and the osmoregulator OmpR. J Bacteriol 177, 4696–4702.
    [Google Scholar]
  69. Stewart, V. ( 2003; ). Biochemical Society Special Lecture. Nitrate- and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem Soc Trans 31, 1–10.
    [Google Scholar]
  70. Takeda, S., Fujisawa, Y., Matsubara, M., Aiba, H. & Mizuno, T. ( 2001; ). A novel feature of the multistep phosphorelay in Escherichia coli: a revised model of the RcsC→YojN→RcsB signalling pathway implicated in capsular synthesis and swarming behaviour. Mol Microbiol 40, 440–450.[CrossRef]
    [Google Scholar]
  71. Teplitski, M., Goodier, R. I. & Ahmer, B. M. ( 2003; ). Pathways leading from BarA/SirA to motility and virulence gene expression in Salmonella. J Bacteriol 185, 7257–7265.[CrossRef]
    [Google Scholar]
  72. Tierrez, A. & Garcia-del Portillo, F. ( 2005; ). New concepts in Salmonella virulence: the importance of reducing the intracellular growth rate in the host. Cell Microbiol 7, 901–909.[CrossRef]
    [Google Scholar]
  73. Uzzau, S., Brown, D. J., Wallis, T., Rubino, S., Leori, G., Bernard, S., Casadesus, J., Platt, D. J. & Olsen, J. E. ( 2000; ). Host adapted serotypes of Salmonella enterica. Epidemiol Infect 125, 229–255.[CrossRef]
    [Google Scholar]
  74. Wallis, T. S. & Barrow, P. A. ( 2005; ). Salmonella epidemiology and pathogenesis in food-producing animals. In Escherichia coli and Salmonella: Cellular and Molecular Biology, chapter 8.6.2.1. Edited by Curtiss III, R. Washington, DC: ASM Press (http://ecosal.org).
  75. Wanner, B. L. & Latterell, P. ( 1980; ). Mutants affected in alkaline phosphatase, expression: evidence for multiple positive regulators of the phosphate regulon in Escherichia coli. Genetics 96, 353–366.
    [Google Scholar]
  76. Winnen, B., Hvorup, R. N. & Saier, M. H., Jr ( 2003; ). The tripartite tricarboxylate transporter (TTT) family. Res Microbiol 154, 457–465.[CrossRef]
    [Google Scholar]
  77. Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R. & Ishihama, A. ( 2005; ). Functional characterization in vitro of all two-component signal transduction systems from Escherichia coli. J Biol Chem 280, 1448–1456.[CrossRef]
    [Google Scholar]
  78. Yamamoto, K., Matsumoto, F., Minagawa, S., Oshima, T., Fujita, N., Ogasawara, N. & Ishihama, A. ( 2009; ). Characterization of CitA-CitB signal transduction activating genes involved in anaerobic citrate catabolism in Escherichia coli. Biosci Biotechnol Biochem 73, 346–350.[CrossRef]
    [Google Scholar]
  79. Yoon, H., McDermott, J. E., Porwollik, S., McClelland, M. & Heffron, F. ( 2009; ). Coordinated regulation of virulence during systemic infection of Salmonella enterica serovar Typhimurium. PLoS Pathog 5, e1000306.[CrossRef]
    [Google Scholar]
  80. Zhou, L., Lei, X. H., Bochner, B. R. & Wanner, B. L. ( 2003; ). Phenotype microarray analysis of Escherichia coli K-12 mutants with deletions of all two-component systems. J Bacteriol 185, 4956–4972.[CrossRef]
    [Google Scholar]
  81. Zimmer, D. P., Soupene, E., Lee, H. L., Wendisch, V. F., Khodursky, A. B., Peter, B. J., Bender, R. A. & Kustu, S. ( 2000; ). Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acad Sci U S A 97, 14674–14679.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041830-0
Loading
/content/journal/micro/10.1099/mic.0.041830-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error