1887

Abstract

spp. have served as models for asexual reproduction in filamentous fungi for over 50 years. Physical stimuli, such as light exposure and mechanical injury to the mycelium, trigger conidiation; however, conidiogenesis itself is a holistic response determined by the cell's metabolic state, as influenced by the environment and endogenous biological rhythms. Key environmental parameters are the carbon and nitrogen status and the C : N ratio, the ambient pH and the level of calcium ions. Recent advances in our understanding of the molecular biology of this fungus have revealed a conserved mechanism of environmental perception through the White Collar orthologues BLR-1 and BLR-2. Also implicated in the molecular regulation are the PacC pathways and the conidial regulator VELVET. Signal transduction cascades which link environmental signals to physiological outputs have also been revealed.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041715-0
2010-10-01
2020-11-30
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2887.html?itemId=/content/journal/micro/10.1099/mic.0.041715-0&mimeType=html&fmt=ahah

References

  1. Adams T. H., Wieser J. K., Yu J. 1998; Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54
    [Google Scholar]
  2. Agrios G. N. 2005 Plant Pathology, 5th edn. San Diego: Academic Press;
    [Google Scholar]
  3. Aguirre J., Rios-Momberg M., Hewitt D., Hansberg W. 2005; Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol 13:111–118
    [Google Scholar]
  4. Amaike S., Keller N. P. 2009; Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot Cell 8:1051–1060
    [Google Scholar]
  5. Aube C., Gagnon C. 1969; Effect of carbon and nitrogen nutrition on growth and sporulation of Trichoderma viride Pers Ex Fries. Can J Microbiol 15:703–706
    [Google Scholar]
  6. Ballario P., Vittorioso P., Magrelli A., Talora C., Cabibbo A., Macino G. 1996; White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657
    [Google Scholar]
  7. Bastos C. N. 2001; Effect of temperature, pH and nutrition on growth and sporulation of Trichoderma stromaticum sp. nov., an antagonist of cocoa witches' broom pathogen. Summa Phytopathol 27:73–76
    [Google Scholar]
  8. Baum D., Horwitz B. A. 1991; Changes in synthesis and abundance of specific polypeptides at early and late stages of blue-light-induced sporulation of Trichoderma. J Photochem Photobiol B 11:117–127
    [Google Scholar]
  9. Bayram O., Krappmann S., Seiler S., Vogt N., Braus G. H. 2008; Neurospora crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127–138
    [Google Scholar]
  10. Berrocal-Tito G., Sametz-Baron L., Eichenberg K., Horwitz B. A., Herrera-Estrella A. 1999; Rapid blue light regulation of a Trichoderma harzianum photolyase gene. J Biol Chem 274:14288–14294
    [Google Scholar]
  11. Berrocal-Tito G. M., Rosales-Saavedra T., Herrera-Estrella A., Horwitz B. A. 2000; Characterization of blue-light and developmental regulation of the photolyase gene phr1 in Trichoderma harzianum. Photochem Photobiol 71:662–668
    [Google Scholar]
  12. Berrocal-Tito G. M., Esquivel-Naranjo E. U., Horwitz B. A., Herrera-Estrella A. 2007; Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction. Eukaryot Cell 6:1682–1692
    [Google Scholar]
  13. Betina V., Farkaš V. 1998; Sporulation and light-induced development in Trichoderma. In Trichoderma and Gliocladium, vol. 1 pp 75–94 Edited by Harman G. E., Kubicek C. P. London: Taylor and Francis Ltd;
    [Google Scholar]
  14. Betina V., Zajacová J. 1978a; Regulation of periodicity and intensity of photo-induced conidiation of Trichoderma viride. Folia Microbiol (Praha) 23:453–459
    [Google Scholar]
  15. Betina V., Zajacová J. 1978b; Inhibition of photo-induced Trichoderma viride conidiation by inhibitors of RNA synthesis. Folia Microbiol (Praha) 23:460–464
    [Google Scholar]
  16. Bissett J. 1991a; A revision of the genus Trichoderma. II. Infrageneric classification. Can J Bot 69:2357–2372
    [Google Scholar]
  17. Bissett J. 1991b; A revision of the genus Trichoderma. III. Section Pachybasium. Can J Bot 69:2373–2417
    [Google Scholar]
  18. Bissett J. 1991c; A revision of the genus Trichoderma. IV. Additional notes on section Longibrachiatum. Can J Bot 69:2418–2420
    [Google Scholar]
  19. Brian P. W., Hemming H. G. 1950; Some nutritional conditions affecting spore production by Trichoderma viride Pers ex Fries. Trans Br Mycol Soc 33:132–141
    [Google Scholar]
  20. Brunner K., Omann M., Pucher M. E., Delic M., Lehner S. M., Domnanich P., Kratochwill K., Druzhinina I., Denk D., Zeilinger S. 2008; Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride. Curr Genet 54:283–299
    [Google Scholar]
  21. Calvo A. M. 2008; The VeA regulatory system and its role in morphological and chemical development in fungi. Fungal Genet Biol 45:1053–1061
    [Google Scholar]
  22. Calvo A. M., Bok J., Brooks W., Keller N. P. 2004; veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 70:4733–4739
    [Google Scholar]
  23. Casas-Flores S., Rios-Momberg M., Bibbins M., Ponce-Noyola P., Herrera-Estrella A. 2004; BLR-1 and BLR-2, key regulatory elements of photoconidiation and mycelial growth in Trichoderma atroviride. Microbiology 150:3561–3569
    [Google Scholar]
  24. Casas-Flores S., Rios-Momberg M., Rosales-Saavedra T., Martinez-Hernandez P., Olmedo-Monfil V., Herrera-Estrella A. 2006; Cross talk between a fungal blue-light perception system and the cyclic AMP signaling pathway. Eukaryot Cell 5:499–506
    [Google Scholar]
  25. Caspani G., Tortora P., Hanozet G. M., Guerritore A. 1985; Glucose-stimulated cAMP increase may be mediated by intracellular acidification in Saccharomyces cerevisiae. FEBS Lett 186:75–79
    [Google Scholar]
  26. Castellanos F., Schmoll M., Martínez P., Tisch D., Kubicek C. P., Herrera-Estrella A., Esquivel-Naranjo E. U. 2010; Crucial factors of the light perception machinery and their impact on growth and cellulase gene transcription in Trichoderma reesei. Fungal Genet Biol 47:468–476
    [Google Scholar]
  27. Cheng P., He Q. Y., Yang Y. H., Wang L. X., Liu Y. 2003; Functional conservation of light, oxygen, or voltage domains in light sensing. Proc Natl Acad Sci U S A 100:5938–5943
    [Google Scholar]
  28. Chernin L., Chet I. 2002; Microbial enzymes in the biocontrol of plant pathogens and pests. In Enzymes in the Environment: Activity, Ecology, and Applications pp 171–226 Edited by Burns R. G., Dick R. P. New York: CRC Press;
    [Google Scholar]
  29. Chitarra G. S., Abee T., Rombouts F. M., Dijksterhuis J. 2005; 1-Octen-3-ol inhibits conidia germination of Penicillium paneum despite of mild effects on membrane permeability, respiration, intracellular pH, and changes the protein composition. FEMS Microbiol Ecol 54:67–75
    [Google Scholar]
  30. Chovanec P., Hudecova D., Varecka L. 2001; Vegetative growth, aging- and light-induced conidiation of Trichoderma viride cultivated on different carbon sources. Folia Microbiol (Praha 46:417–422
    [Google Scholar]
  31. Degli-Innocenti F., Russo V. E. A. 1984; Isolation of new White-Collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol 159:757–761
    [Google Scholar]
  32. Deitzer G. F., Horwitz B. A., Gressel J. 1988; Rhythms in blue-light-induced conidiation of wild-type and a mutant strain of Trichoderma harzianum. Photochem Photobiol 47:425–431
    [Google Scholar]
  33. Dunlap J. C., Loros J. J. 2006; How fungi keep time: circadian system in Neurospora and other fungi. Curr Opin Microbiol 9:579–587
    [Google Scholar]
  34. Dunlap J. C., Loros J. J., Colot H. V., Mehra A., Belden W. J., Shi M., Hong C. I., Larrondo L. F., Baker C. L. other authors 2007; A circadian clock in Neurospora: how genes and proteins cooperate to produce a sustained, entrainable, and compensated biological oscillator with a period of about a day. Cold Spring Harb Symp Quant Biol 72:57–68
    [Google Scholar]
  35. Ellison P. J., Harrower K. M., Chilvers G. A., Owens J. D. 1981; Patterns of sporulation in Trichoderma viride. Trans Br Mycol Soc 76:441–445
    [Google Scholar]
  36. Esquivel-Naranjo E. U., Herrera-Estrella A. 2007; Enhanced responsiveness and sensitivity to blue light by blr-2 overexpression in Trichoderma atroviride. Microbiology 153:3909–3922
    [Google Scholar]
  37. Fiedler K., Schutz E., Geh S. 2001; Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204:111–121
    [Google Scholar]
  38. Franchi L., Fulci V., Macino G. 2005; Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol Microbiol 56:334–345
    [Google Scholar]
  39. Friedl M. A., Kubicek C. P., Druzhinina I. S. 2008; Carbon source dependence and photostimulation of conidiation in Hypocrea atroviridis. Appl Environ Microbiol 74:245–250
    [Google Scholar]
  40. Froehlich A. C., Liu Y., Loros J. J., Dunlap J. C. 2002; White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819
    [Google Scholar]
  41. Galun E. 1971; Morphogenesis in Trichoderma: induction of conidiation by narrow-beam illumination of restricted areas of the fungal colony. Plant Cell Physiol 12:779–783
    [Google Scholar]
  42. Gao L., Sun M. H., Liu X. Z., Che Y. S. 2007; Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol Res 111:87–92
    [Google Scholar]
  43. Georgiou C. D., Patsoukis N., Papapostolou I., Zervoudakis G. 2006; Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integr Comp Biol 46:691–712
    [Google Scholar]
  44. Gradisnik-Grapulin M., Legisa M. 1997; A spontaneous change in the intracellular cyclic AMP level in Aspergillus niger is influenced by the sucrose concentration in the medium and by light. Appl Environ Microbiol 63:2844–2849
    [Google Scholar]
  45. Gresík M., Kolarova N., Farkas V. 1988; Membrane potential, ATP, and cyclic AMP changes induced by light in Trichoderma viride. Exp Mycol 12:295–301
    [Google Scholar]
  46. Gresík M., Kolarova N., Farkas V. 1989; Light-stimulated phosphorylation of proteins in cell-free extracts from Trichoderma viride. FEBS Lett 248:185–187
    [Google Scholar]
  47. Gresík M., Kolarova N., Farkas V. 1991; Hyperpolarization and intracellular acidification in Trichoderma viride as a response to illumination. J Gen Microbiol 137:2605–2609
    [Google Scholar]
  48. Gressel J., Galun E. 1967; Morphogenesis in Trichoderma: photoinduction and RNA. Dev Biol 15:575–598
    [Google Scholar]
  49. Gressel J. B., Hartmann K. M. 1968; Morphogenesis in Trichoderma: action spectrum of photoinduced sporulation. Planta 79:271–274
    [Google Scholar]
  50. Gressel J., Bar-Lev S., Galun E. 1975; Blue light induced response in the absence of free oxygen. Plant Cell Physiol 16:367–370
    [Google Scholar]
  51. Gutter Y. 1957; Effect of light on sporulation of Trichoderma viride Pers. ex Fries. Bull Res Counc Israel Sect D Bot 5:273–286
    [Google Scholar]
  52. Harding R. W., Turner R. V. 1981; Photoregulation of the carotenoid biosynthetic pathway in albino and White-Collar mutants of Neurospora crassa. Plant Physiol 68:745–749
    [Google Scholar]
  53. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M. 2004; Trichoderma species – opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56
    [Google Scholar]
  54. He Q. Y., Liu Y. 2005; Molecular mechanism of light responses in Neurospora: from light-induced transcription to photoadaptation. Genes Dev 19:2888–2899
    [Google Scholar]
  55. He Q. Y., Cheng P., Yang Y. H., Wang L. X., Gardner K. H., Liu Y. 2002; White Collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843
    [Google Scholar]
  56. Herrera-Estrella A., Horwitz B. A. 2007; Looking through the eyes of fungi: molecular genetics of photoreception. Mol Microbiol 64:5–15
    [Google Scholar]
  57. Hoff B., Kamerewerd J., Sigl C., Mitterbauer R., Zadra I., Kürnsteiner H., Kück U. 2010; Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development and penicillin biosynthesis in Penicillium chrysogenum. Eukaryot Cell Jun 11 [Epub ahead of print], doi:.
    [Google Scholar]
  58. Horwitz B. A., Perlman A., Gressel J. 1990; Induction of Trichoderma sporulation by nanosecond laser pulses: evidence against cryptochrome cycling. Photochem Photobiol 51:99–104
    [Google Scholar]
  59. Insam H., Seewald M. S. A. 2010; Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46:199–213
    [Google Scholar]
  60. Jackson A. M., Whipps J. M., Lynch J. M. 1991; Nutritional studies of four fungi with disease biocontrol potential. Enzyme Microb Technol 13:456–461
    [Google Scholar]
  61. Kindermann J., El-Ayouti Y., Samuels G. J., Kubicek C. P. 1998; Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet Biol 24:298–309
    [Google Scholar]
  62. Krappmann S., Bayram O., Braus G. H. 2005; Deletion and allelic exchange of the Aspergillus fumigatus veA locus via a novel recyclable marker module. Eukaryot Cell 4:1298–1307
    [Google Scholar]
  63. Kredics L., Manczinger L., Antal Z., Penzes Z., Szekeres A., Kevei F., Nagy E. 2004; In vitro water activity and pH dependence of mycelial growth and extracellular enzyme activities of Trichoderma strains with biocontrol potential. J Appl Microbiol 96:491–498
    [Google Scholar]
  64. Krystofová S., Varecka L., Betina V. 1995; The 45Ca2+ uptake by Trichoderma viride mycelium. Correlation with growth and conidiation. Gen Physiol Biophys 14:323–327
    [Google Scholar]
  65. Kumagai T., Oda Y. 1969; An action spectrum for photoinduced sporulation in fungus Trichoderma viride. Plant Physiol 10:387–392
    [Google Scholar]
  66. Lakin-Thomas P. L., Brody S. 2004; Circadian rhythms in microorganisms: new complexities. Annu Rev Microbiol 58:489–519
    [Google Scholar]
  67. Lee N., D'Souza C. A., Kronstad J. W. 2003; Of smuts, blasts, mildews, and blights: cAMP signaling in phytopathogenic fungi. Annu Rev Phytopathol 41:399–427
    [Google Scholar]
  68. Lewis J. A., Papavizas G. C. 1983; Production of chlamydospores and conidia by Trichoderma spp. in liquid and solid growth media. Soil Biol Biochem 15:351–357
    [Google Scholar]
  69. Lieckfeldt E., Samuels G. J., Nirenberg H. I., Petrini O. 1999; A morphological and molecular perspective of Trichoderma viride: is it one or two species?. Appl Environ Microbiol 65:2418–2428
    [Google Scholar]
  70. Lin H. C., Phelan P. L. 1992; Comparison of volatiles from beetle-transmitted Ceratocystis fagacearum and 4 noninsect-dependent fungi. J Chem Ecol 18:1623–1632
    [Google Scholar]
  71. Linden H., Macino G. 1997; White Collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109
    [Google Scholar]
  72. Loros J. J., Dunlap J. C. 2001; Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol 63:757–794
    [Google Scholar]
  73. Marzluf G. A. 1997; Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32
    [Google Scholar]
  74. Mendoza-Mendoza A., Pozo M. J., Grzegorski D., Martinez P., Garcia J. M., Olmedo-Monfil V., Cortes C., Kenerley C., Herrera-Estrella A. 2003; Enhanced biocontrol activity of Trichoderma through inactivation of a mitogen-activated protein kinase. Proc Natl Acad Sci U S A 100:15965–15970
    [Google Scholar]
  75. Mendoza-Mendoza A., Rosales-Saavedra T., Cortes C., Castellanos-Juarez V., Martinez P., Herrera-Estrella A. 2007; The MAP kinase TVK1 regulates conidiation, hydrophobicity and the expression of genes encoding cell wall proteins in the fungus Trichoderma virens. Microbiology 153:2137–2147
    [Google Scholar]
  76. Mikus M., Hatvani L., Neuhof T., Komon-Zelazowska M., Dieckmann R., Schwecke T., Druzhinina I. S., von Dohren H., Kubicek C. P. 2009; Differential regulation and posttranslational processing of the class II hydrophobin genes from the biocontrol fungus Hypocrea atroviridis. Appl Environ Microbiol 75:3222–3229
    [Google Scholar]
  77. Möglich A., Ayers R. A., Moffat K. 2009; Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282–1294
    [Google Scholar]
  78. Monga D. 2001; Effect of carbon and nitrogen sources on spore germination, biomass production and antifungal metabolites by species of Trichoderma and Gliocladium. Indian Phytopathol 54:435–437
    [Google Scholar]
  79. Mooney J. L., Yager L. N. 1990; Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482
    [Google Scholar]
  80. Moreno-Mateos M. A., Delgado-Jarana J., Codon A. C., Benitez T. 2007; pH and Pac1 control development and antifungal activity in Trichoderma harzianum. Fungal Genet Biol 44:1355–1367
    [Google Scholar]
  81. Mukherjee P. K., Kenerley C. M. 2010; Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET Protein, Vel1. Appl Environ Microbiol 76:2345–2352
    [Google Scholar]
  82. Mukherjee P. K., Latha J., Hadar R., Horwitz B. A. 2003; TmkA, a mitogen-activated protein kinase of Trichoderma virens, is involved in biocontrol properties and repression of conidiation in the dark. Eukaryot Cell 2:446–455
    [Google Scholar]
  83. Mukherjee P. K., Latha J., Hadar R., Horwitz B. A. 2004; Role of two G-protein alpha subunits, TgaA and TgaB, in the antagonism of plant pathogens by Trichoderma virens. Appl Environ Microbiol 70:542–549
    [Google Scholar]
  84. Mukherjee M., Mukherjee P. K., Kale S. P. 2007; cAMP signalling is involved in growth, germination, mycoparasitism and secondary metabolism in Trichoderma virens. Microbiology 153:1734–1742
    [Google Scholar]
  85. Muñoz G., Nakari-Setala T., Agosin E., Penttila M. 1997; Hydrophobin gene srh1, expressed during sporulation of the biocontrol agent Trichoderma harzianum. Curr Genet 32:225–230
    [Google Scholar]
  86. Nemcovic M., Farkas V. 1998; Stimulation of conidiation by derivatives of cAMP in Trichoderma viride. Folia Microbiol 43:399–402
    [Google Scholar]
  87. Nemcovic M., Jakubikova L., Viden I., Farkas V. 2008; Induction of conidiation by endogenous volatile compounds in Trichoderma spp. FEMS Microbiol Lett 284:231–236
    [Google Scholar]
  88. Olsson S. 1999; Nutrient translocation and electrical signalling. In The Fungal Colony pp 25–48 Edited by Gow N. A. R., Robson G. D., Gadd G. M. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  89. Papapostolou I., Georgiou C. D. 2010; Superoxide radical induces sclerotial differentiation in filamentous phytopathogenic fungi: a superoxide dismutase mimetics study. Microbiology 156:960–966
    [Google Scholar]
  90. Peñalva M. A., Arst H. N. Jr 2002; Regulation of gene expression by ambient pH in filamentous fungi and yeasts. Microbiol Mol Biol Rev 66:426–446
    [Google Scholar]
  91. Peñalva M. A., Arst H. N. 2004; Recent advances in the characterization of ambient pH regulation of gene expression in filamentous fungi and yeasts. Annu Rev Microbiol 58:425–451
    [Google Scholar]
  92. Prusky D., Yakoby N. 2003; Pathogenic fungi: leading or led by ambient pH?. Mol Plant Pathol 4:509–516
    [Google Scholar]
  93. Puyesky M., Ponce-Noyola P., Horwitz B. A., Herrera-Estrella A. 1997; Glyceraldehyde-3-phosphate dehydrogenase expression in Trichoderma harzianum is repressed during conidiation and mycoparasitism. Microbiology 143:3157–3164
    [Google Scholar]
  94. Rifai M. A. 1969; A revision of the genus Trichoderma. Mycol Pap 116:1–56
    [Google Scholar]
  95. Rocha-Ramirez V., Omero C., Chet I., Horwitz B. A., Herrera-Estrella A. 2002; Trichoderma atroviride G-protein α-subunit gene tga1 is involved in mycoparasitic coiling and conidiation. Eukaryot Cell 1:594–605
    [Google Scholar]
  96. Roncal T., Ugalde U. O., Irastorza A. 1993; Calcium-induced conidiation in Penicillium cyclopium: calcium triggers cytosolic alkalinization at the hyphal tip. J Bacteriol 175:879–886
    [Google Scholar]
  97. Rosales-Saavedra T., Esquivel-Naranjo E. U., Casas-Flores S., Martinez-Hernandez P., Ibarra-Laclette E., Cortes-Penagos C., Herrera-Estrella A. 2006; Novel light-regulated genes in Trichoderma atroviride: a dissection by cDNA microarrays. Microbiology 152:3305–3317
    [Google Scholar]
  98. Schaeffer H. J., Weber M. J. 1999; Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444
    [Google Scholar]
  99. Schmoll M., Franchi L., Kubicek C. P. 2005; Envoy, a PAS/LOV domain protein of Hypocrea jecorina (anamorph Trichoderma reesei), modulates cellulase gene transcription in response to light. Eukaryot Cell 4:1998–2007
    [Google Scholar]
  100. Schmoll M., Schuster A., Silva R. D., Kubicek C. P. 2009; The G-alpha protein GNA3 of Hypocrea jecorina (anamorph Trichoderma reesei) regulates cellulase gene expression in the presence of light. Eukaryot Cell 8:410–420
    [Google Scholar]
  101. Schmoll M., Esquivel-Naranjo E. U., Herrera-Estrella A. 2010; Trichoderma in the light of day: physiology and development. Fungal Genet Biol May 11: [Epub ahead of print]. doi
    [Google Scholar]
  102. Schnürer J., Olsson J., Borjesson T. 1999; Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol 27:209–217
    [Google Scholar]
  103. Schöller C. E. G., Gurtler H., Pederson R., Molin S., Wilkins K. 2002; Volatile metabolites from actinomycetes. J Agric Food Chem 50:2615–2621
    [Google Scholar]
  104. Schrüfer K., Lysek G. 1990; Rhythmic growth and sporulation in Trichoderma species: differences within a population of isolates. Mycol Res 94:124–127
    [Google Scholar]
  105. Schuster A., Kubicek C. P., Friedl M. A., Druzhinina I. S., Schmoll M. 2007; Impact of light on Hypocrea jecorina and the multiple cellular roles of ENVOY in this process. BMC Genomics 8:449
    [Google Scholar]
  106. Schwerdtfeger C., Linden H. 2001; Blue light adaptation and desensitization of light signal transduction in Neurospora crassa. Mol Microbiol 39:1080–1087
    [Google Scholar]
  107. Schwerdtfeger C., Linden H. 2003; VIVID is a flavoprotein and serves as a fungal blue light photoreceptor for photoadaptation. EMBO J 22:4846–4855
    [Google Scholar]
  108. Seibel C., Gremel G., Silva R. D., Schuster A., Kubicek C. P., Schmoll M. 2009; Light-dependent roles of the G-protein α subunit GNA1 of Hypocrea jecorina (anamorph Trichoderma reesei. BMC Biol 7:58
    [Google Scholar]
  109. Seidl V., Song L., Lindquist E., Gruber S., Koptchinskiy A., Zeilinger S., Schmoll M., Martínez P., Sun J. other authors 2009; Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 10:567
    [Google Scholar]
  110. Silverman-Gavrila L. B., Lew R. R. 2003; Calcium gradient dependence of Neurospora crassa hyphal growth. Microbiology 149:2475–2485
    [Google Scholar]
  111. Simkovic M., Ditte P., Kurucova A., Lakatos B., Varecka L. 2008; Ca2+-dependent induction of conidiation in submerged cultures of Trichoderma viride. Can J Microbiol 54:291–298
    [Google Scholar]
  112. Sokolovsky V. Y., Lauter F. R., Mullerrober B., Ricci M., Schmidhauser T. J., Russo V. E. A. 1992; Nitrogen regulation of blue light-inducible genes in Neurospora crassa. J Gen Microbiol 138:2045–2049
    [Google Scholar]
  113. Steyaert J. M. 2007; Studies on the regulation of conidiation in species of Trichoderma. PhD thesis Lincoln University; Lincoln, New Zealand:
  114. Steyaert J. M., Weld R. J., Loguercio L. L., Stewart A. 2010a; Rhythmic conidiation in the blue-light fungus Trichoderma pleuroticola. Fungal Biol 114:219–223
    [Google Scholar]
  115. Steyaert J. M., Weld R. J., Stewart A. 2010b; Ambient pH intrinsically influences Trichoderma conidiation and colony morphology. Fungal Biol 114:198–208
    [Google Scholar]
  116. Steyaert J. M., Weld R. J., Stewart A. 2010c; Isolate-specific conidiation in Trichoderma in response to different nitrogen sources. Fungal Biol 114:179–188
    [Google Scholar]
  117. Stoppacher N., Kluger B., Zeilinger S., Krska R., Schuhmacher R. 2010; Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods 81:187–193
    [Google Scholar]
  118. Sulova Z., Farkas V. 1991; Photoinduced conidiation in Trichoderma viride: a study with inhibitors. Folia Microbiol 36:267–270
    [Google Scholar]
  119. Sulova Z., Hrmova M., Farkas V. 1990; Photostimulated oxygen-uptake in Trichoderma viride. J Gen Microbiol 136:2287–2290
    [Google Scholar]
  120. Taylor B. L., Zhulin I. B. 1999; PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506
    [Google Scholar]
  121. ter Schure E. G., van Riel N. A. W., Verrips C. T. 2000; The role of ammonia metabolism in nitrogen catabolite repression in Saccharomyces cerevisiae. FEMS Microbiol Rev 24:67–83
    [Google Scholar]
  122. Watkinson S. 1999; Metabolism and hyphal differentiation in large basidiomycete colonies. In The Fungal Colony pp 126–156 Edited by Gow N. A. R., Robson G. D., Gadd G. M. Cambridge, UK: Cambridge University Press;
    [Google Scholar]
  123. Wheatley R., Hackett C., Bruce A., Kundzewicz A. 1997; Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegrad 39:199–205
    [Google Scholar]
  124. Wiame J. M., Grenson M., Arst H. N. Jr 1985; Nitrogen catabolite repression in yeast and filamentous fungi. Adv Microb Physiol 26:1–88
    [Google Scholar]
  125. Wiemann P., Brown D. W., Kleigrewe K., Bok J. W., Keller N. P., Humpf H. U., Tudzynski B. 2010; FfVel1 and FfLae1, components of a velvet-like complex in Fusarium fujikuroi, affect differentiation, secondary metabolism and virulence. Mol Microbiol Jun 21 [Epub ahead of print]. doi
  126. Xu J. R. 2000; MAP kinases in fungal pathogens. Fungal Genet Biol 31:137–152
    [Google Scholar]
  127. Zeilinger S., Reithner B., Scala V., Peissl I., Lorito M., Mach R. L. 2005; Signal transduction by Tga3, a novel G protein α subunit of Trichoderma atroviride. Appl Environ Microbiol 71:1591–1597
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041715-0
Loading
/content/journal/micro/10.1099/mic.0.041715-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error