1887

Abstract

Recently, a link between endocytosis and hyphal morphogenesis has been identified in via the Wiskott–Aldrich syndrome gene homologue . To get a more detailed mechanistic understanding of this link we have investigated a potentially conserved interaction between Wal1 and the WASP-interacting protein (WIP) homologue encoded by . Deletion of both alleles of results in strong hyphal growth defects under serum inducing conditions but filamentation can be observed on Spider medium. Mutant cells show a delay in endocytosis – measured as the uptake and delivery of the lipophilic dye FM4-64 into small endocytic vesicles – compared to the wild-type. Vacuolar morphology was found to be fragmented in a subset of cells and the cortical actin cytoskeleton was depolarized in daughter cells. The morphology of the null mutant could be complemented by reintegration of the wild-type gene at the locus. Using the yeast two-hybrid system we could demonstrate an interaction between the C-terminal part of Vrp1 and the N-terminal part of Wal1, which contains the WH1 domain. Furthermore, we found that Myo5 has several potential interaction sites on Vrp1. This suggests that a Wal1–Vrp1–Myo5 complex plays an important role in endocytosis and the polarized localization of the cortical actin cytoskeleton to promote polarized hyphal growth in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041707-0
2010-10-01
2019-09-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2962.html?itemId=/content/journal/micro/10.1099/mic.0.041707-0&mimeType=html&fmt=ahah

References

  1. Aghamohammadzadeh, S. & Ayscough, K. R. ( 2009; ). Differential requirements for actin during yeast and mammalian endocytosis. Nat Cell Biol 11, 1039–1042.[CrossRef]
    [Google Scholar]
  2. Anderson, B. L., Boldogh, I., Evangelista, M., Boone, C., Greene, L. A. & Pon, L. A. ( 1998; ). The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J Cell Biol 141, 1357–1370.[CrossRef]
    [Google Scholar]
  3. D'Agostino, J. L. & Goode, B. L. ( 2005; ). Dissection of Arp2/3 complex actin nucleation mechanism and distinct roles for its nucleation-promoting factors in Saccharomyces cerevisiae. Genetics 171, 35–47.[CrossRef]
    [Google Scholar]
  4. Evangelista, M., Klebl, B. M., Tong, A. H., Webb, B. A., Leeuw, T., Leberer, E., Whiteway, M., Thomas, D. Y. & Boone, C. ( 2000; ). A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol 148, 353–362.[CrossRef]
    [Google Scholar]
  5. Evangelista, M., Pruyne, D., Amberg, D. C., Boone, C. & Bretscher, A. ( 2002; ). Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4, 32–41.[CrossRef]
    [Google Scholar]
  6. Evangelista, M., Zigmond, S. & Boone, C. ( 2003; ). Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci 116, 2603–2611.[CrossRef]
    [Google Scholar]
  7. Franke, K., Nguyen, M., Hartl, A., Dahse, H. M., Vogl, G., Wurzner, R., Zipfel, P. F., Kunkel, W. & Eck, R. ( 2006; ). The vesicle transport protein Vac1p is required for virulence of Candida albicans. Microbiology 152, 3111–3121.[CrossRef]
    [Google Scholar]
  8. Gietz, R. D. & Schiestl, R. H. ( 2007; ). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2, 31–34.[CrossRef]
    [Google Scholar]
  9. Kaksonen, M., Sun, Y. & Drubin, D. G. ( 2003; ). A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115, 475–487.[CrossRef]
    [Google Scholar]
  10. Kaksonen, M., Toret, C. P. & Drubin, D. G. ( 2005; ). A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123, 305–320.[CrossRef]
    [Google Scholar]
  11. Lambert, A. A., Perron, M. P., Lavoie, E. & Pallotta, D. ( 2007; ). The Saccharomyces cerevisiae Arf3 protein is involved in actin cable and cortical patch formation. FEMS Yeast Res 7, 782–795.[CrossRef]
    [Google Scholar]
  12. Lechler, T., Shevchenko, A. & Li, R. ( 2000; ). Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol 148, 363–373.[CrossRef]
    [Google Scholar]
  13. Li, R. ( 1997; ). Bee1, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J Cell Biol 136, 649–658.[CrossRef]
    [Google Scholar]
  14. Machesky, L. M. ( 2000; ). The tails of two myosins. J Cell Biol 148, 219–221.[CrossRef]
    [Google Scholar]
  15. Madania, A., Dumoulin, P., Grava, S., Kitamoto, H., Scharer-Brodbeck, C., Soulard, A., Moreau, V. & Winsor, B. ( 1999; ). The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol Biol Cell 10, 3521–3538.[CrossRef]
    [Google Scholar]
  16. Martin, R., Walther, A. & Wendland, J. ( 2005; ). Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot Cell 4, 1712–1724.[CrossRef]
    [Google Scholar]
  17. Munn, A. L. ( 2001; ). Molecular requirements for the internalisation step of endocytosis: insights from yeast. Biochim Biophys Acta 1535, 236–257.[CrossRef]
    [Google Scholar]
  18. Munn, A. L. & Thanabalu, T. ( 2009; ). Verprolin: a cool set of actin-binding sites and some very HOT prolines. IUBMB Life 61, 707–712.[CrossRef]
    [Google Scholar]
  19. Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. & Munn, A. L. ( 1998; ). The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol 8, 959–962.[CrossRef]
    [Google Scholar]
  20. Noble, S. M. & Johnson, A. D. ( 2005; ). Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell 4, 298–309.[CrossRef]
    [Google Scholar]
  21. Oberholzer, U., Marcil, A., Leberer, E., Thomas, D. Y. & Whiteway, M. ( 2002; ). Myosin I is required for hypha formation in Candida albicans. Eukaryot Cell 1, 213–228.[CrossRef]
    [Google Scholar]
  22. Oberholzer, U., Iouk, T. L., Thomas, D. Y. & Whiteway, M. ( 2004; ). Functional characterization of myosin I tail regions in Candida albicans. Eukaryot Cell 3, 1272–1286.[CrossRef]
    [Google Scholar]
  23. Palmer, G. E., Cashmore, A. & Sturtevant, J. ( 2003; ). Candida albicans VPS11 is required for vacuole biogenesis and germ tube formation. Eukaryot Cell 2, 411–421.[CrossRef]
    [Google Scholar]
  24. Pruyne, D. & Bretscher, A. ( 2000; ). Polarization of cell growth in yeast. J Cell Sci 113, 571–585.
    [Google Scholar]
  25. Ramesh, N., Anton, I. M., Hartwig, J. H. & Geha, R. S. ( 1997; ). WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A 94, 14671–14676.[CrossRef]
    [Google Scholar]
  26. Reijnst, P., Jorde, S. & Wendland, J. ( 2010; ). Candida albicans SH3-domain proteins involved in hyphal growth, cytokinesis, and vacuolar morphology. Curr Genet 56, 309–319.[CrossRef]
    [Google Scholar]
  27. Ren, G., Wang, J., Brinkworth, R., Winsor, B., Kobe, B. & Munn, A. L. ( 2005; ). Verprolin cytokinesis function mediated by the Hof one trap domain. Traffic 6, 575–593.[CrossRef]
    [Google Scholar]
  28. Rose, M. & Botstein, D. ( 1983; ). Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol 101, 167–180.
    [Google Scholar]
  29. Sagot, I., Rodal, A. A., Moseley, J., Goode, B. L. & Pellman, D. ( 2002; ). An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4, 626–631.
    [Google Scholar]
  30. Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. & Snyder, M. ( 1998; ). Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol Cell Biol 18, 4053–4069.
    [Google Scholar]
  31. Smith, M. G., Swamy, S. R. & Pon, L. A. ( 2001; ). The life cycle of actin patches in mating yeast. J Cell Sci 114, 1505–1513.
    [Google Scholar]
  32. Sudbery, P., Gow, N. & Berman, J. ( 2004; ). The distinct morphogenic states of Candida albicans. Trends Microbiol 12, 317–324.[CrossRef]
    [Google Scholar]
  33. Thrasher, A. J. & Burns, S. O. ( 2010; ). WASP: a key immunological multitasker. Nat Rev Immunol 10, 182–192.[CrossRef]
    [Google Scholar]
  34. Vaduva, G., Martinez-Quiles, N., Anton, I. M., Martin, N. C., Geha, R. S., Hopper, A. K. & Ramesh, N. ( 1999; ). The human WASP-interacting protein, WIP, activates the cell polarity pathway in yeast. J Biol Chem 274, 17103–17108.[CrossRef]
    [Google Scholar]
  35. Veses, V., Richards, A. & Gow, N. A. ( 2008; ). Vacuoles and fungal biology. Curr Opin Microbiol 11, 503–510.[CrossRef]
    [Google Scholar]
  36. Walther, A. & Wendland, J. ( 2003; ). An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet 42, 339–343.[CrossRef]
    [Google Scholar]
  37. Walther, A. & Wendland, J. ( 2004; ). Polarized hyphal growth in Candida albicans requires the Wiskott–Aldrich Syndrome protein homolog Wal1p. Eukaryot Cell 3, 471–482.[CrossRef]
    [Google Scholar]
  38. Walther, A. & Wendland, J. ( 2008; ). PCR-based gene targeting in Candida albicans. Nat Protoc 3, 1414–1421.[CrossRef]
    [Google Scholar]
  39. Whiteway, M. & Bachewich, C. ( 2007; ). Morphogenesis in Candida albicans. Annu Rev Microbiol 61, 529–553.[CrossRef]
    [Google Scholar]
  40. Whiteway, M. & Oberholzer, U. ( 2004; ). Candida morphogenesis and host–pathogen interactions. Curr Opin Microbiol 7, 350–357.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041707-0
Loading
/content/journal/micro/10.1099/mic.0.041707-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error