1887

Abstract

Recently, a link between endocytosis and hyphal morphogenesis has been identified in via the Wiskott–Aldrich syndrome gene homologue . To get a more detailed mechanistic understanding of this link we have investigated a potentially conserved interaction between Wal1 and the WASP-interacting protein (WIP) homologue encoded by . Deletion of both alleles of results in strong hyphal growth defects under serum inducing conditions but filamentation can be observed on Spider medium. Mutant cells show a delay in endocytosis – measured as the uptake and delivery of the lipophilic dye FM4-64 into small endocytic vesicles – compared to the wild-type. Vacuolar morphology was found to be fragmented in a subset of cells and the cortical actin cytoskeleton was depolarized in daughter cells. The morphology of the null mutant could be complemented by reintegration of the wild-type gene at the locus. Using the yeast two-hybrid system we could demonstrate an interaction between the C-terminal part of Vrp1 and the N-terminal part of Wal1, which contains the WH1 domain. Furthermore, we found that Myo5 has several potential interaction sites on Vrp1. This suggests that a Wal1–Vrp1–Myo5 complex plays an important role in endocytosis and the polarized localization of the cortical actin cytoskeleton to promote polarized hyphal growth in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041707-0
2010-10-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2962.html?itemId=/content/journal/micro/10.1099/mic.0.041707-0&mimeType=html&fmt=ahah

References

  1. Aghamohammadzadeh S., Ayscough K. R.. 2009; Differential requirements for actin during yeast and mammalian endocytosis. Nat Cell Biol11:1039–1042
    [Google Scholar]
  2. Anderson B. L., Boldogh I., Evangelista M., Boone C., Greene L. A., Pon L. A.. 1998; The Src homology domain 3 (SH3) of a yeast type I myosin, Myo5p, binds to verprolin and is required for targeting to sites of actin polarization. J Cell Biol141:1357–1370
    [Google Scholar]
  3. D'Agostino J. L., Goode B. L.. 2005; Dissection of Arp2/3 complex actin nucleation mechanism and distinct roles for its nucleation-promoting factors in Saccharomyces cerevisiae. Genetics171:35–47
    [Google Scholar]
  4. Evangelista M., Klebl B. M., Tong A. H., Webb B. A., Leeuw T., Leberer E., Whiteway M., Thomas D. Y., Boone C.. 2000; A role for myosin-I in actin assembly through interactions with Vrp1p, Bee1p, and the Arp2/3 complex. J Cell Biol148:353–362
    [Google Scholar]
  5. Evangelista M., Pruyne D., Amberg D. C., Boone C., Bretscher A.. 2002; Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol4:32–41
    [Google Scholar]
  6. Evangelista M., Zigmond S., Boone C.. 2003; Formins: signaling effectors for assembly and polarization of actin filaments. J Cell Sci116:2603–2611
    [Google Scholar]
  7. Franke K., Nguyen M., Hartl A., Dahse H. M., Vogl G., Wurzner R., Zipfel P. F., Kunkel W., Eck R.. 2006; The vesicle transport protein Vac1p is required for virulence of Candida albicans. Microbiology152:3111–3121
    [Google Scholar]
  8. Gietz R. D., Schiestl R. H.. 2007; High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc2:31–34
    [Google Scholar]
  9. Kaksonen M., Sun Y., Drubin D. G.. 2003; A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell115:475–487
    [Google Scholar]
  10. Kaksonen M., Toret C. P., Drubin D. G.. 2005; A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell123:305–320
    [Google Scholar]
  11. Lambert A. A., Perron M. P., Lavoie E., Pallotta D.. 2007; The Saccharomyces cerevisiae Arf3 protein is involved in actin cable and cortical patch formation. FEMS Yeast Res7:782–795
    [Google Scholar]
  12. Lechler T., Shevchenko A., Li R.. 2000; Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J Cell Biol148:363–373
    [Google Scholar]
  13. Li R.. 1997; Bee1, a yeast protein with homology to Wiscott-Aldrich syndrome protein, is critical for the assembly of cortical actin cytoskeleton. J Cell Biol136:649–658
    [Google Scholar]
  14. Machesky L. M.. 2000; The tails of two myosins. J Cell Biol148:219–221
    [Google Scholar]
  15. Madania A., Dumoulin P., Grava S., Kitamoto H., Scharer-Brodbeck C., Soulard A., Moreau V., Winsor B.. 1999; The Saccharomyces cerevisiae homologue of human Wiskott-Aldrich syndrome protein Las17p interacts with the Arp2/3 complex. Mol Biol Cell10:3521–3538
    [Google Scholar]
  16. Martin R., Walther A., Wendland J.. 2005; Ras1-induced hyphal development in Candida albicans requires the formin Bni1. Eukaryot Cell4:1712–1724
    [Google Scholar]
  17. Munn A. L.. 2001; Molecular requirements for the internalisation step of endocytosis: insights from yeast. Biochim Biophys Acta 1535;236–257
    [Google Scholar]
  18. Munn A. L., Thanabalu T.. 2009; Verprolin: a cool set of actin-binding sites and some very HOT prolines. IUBMB Life61:707–712
    [Google Scholar]
  19. Naqvi S. N., Zahn R., Mitchell D. A., Stevenson B. J., Munn A. L.. 1998; The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. Curr Biol8:959–962
    [Google Scholar]
  20. Noble S. M., Johnson A. D.. 2005; Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. Eukaryot Cell4:298–309
    [Google Scholar]
  21. Oberholzer U., Marcil A., Leberer E., Thomas D. Y., Whiteway M.. 2002; Myosin I is required for hypha formation in Candida albicans. Eukaryot Cell1:213–228
    [Google Scholar]
  22. Oberholzer U., Iouk T. L., Thomas D. Y., Whiteway M.. 2004; Functional characterization of myosin I tail regions in Candida albicans. Eukaryot Cell3:1272–1286
    [Google Scholar]
  23. Palmer G. E., Cashmore A., Sturtevant J.. 2003; Candida albicans VPS11 is required for vacuole biogenesis and germ tube formation. Eukaryot Cell2:411–421
    [Google Scholar]
  24. Pruyne D., Bretscher A.. 2000; Polarization of cell growth in yeast. J Cell Sci113:571–585
    [Google Scholar]
  25. Ramesh N., Anton I. M., Hartwig J. H., Geha R. S.. 1997; WIP, a protein associated with Wiskott–Aldrich syndrome protein, induces actin polymerization and redistribution in lymphoid cells. Proc Natl Acad Sci U S A94:14671–14676
    [Google Scholar]
  26. Reijnst P., Jorde S., Wendland J.. 2010; Candida albicans SH3-domain proteins involved in hyphal growth, cytokinesis, and vacuolar morphology. Curr Genet56:309–319
    [Google Scholar]
  27. Ren G., Wang J., Brinkworth R., Winsor B., Kobe B., Munn A. L.. 2005; Verprolin cytokinesis function mediated by the Hof one trap domain. Traffic6:575–593
    [Google Scholar]
  28. Rose M., Botstein D.. 1983; Construction and use of gene fusions to lacZ (beta-galactosidase) that are expressed in yeast. Methods Enzymol101:167–180
    [Google Scholar]
  29. Sagot I., Rodal A. A., Moseley J., Goode B. L., Pellman D.. 2002; An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol4:626–631
    [Google Scholar]
  30. Sheu Y. J., Santos B., Fortin N., Costigan C., Snyder M.. 1998; Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis. Mol Cell Biol18:4053–4069
    [Google Scholar]
  31. Smith M. G., Swamy S. R., Pon L. A.. 2001; The life cycle of actin patches in mating yeast. J Cell Sci114:1505–1513
    [Google Scholar]
  32. Sudbery P., Gow N., Berman J.. 2004; The distinct morphogenic states of Candida albicans. Trends Microbiol12:317–324
    [Google Scholar]
  33. Thrasher A. J., Burns S. O.. 2010; WASP: a key immunological multitasker. Nat Rev Immunol10:182–192
    [Google Scholar]
  34. Vaduva G., Martinez-Quiles N., Anton I. M., Martin N. C., Geha R. S., Hopper A. K., Ramesh N.. 1999; The human WASP-interacting protein, WIP, activates the cell polarity pathway in yeast. J Biol Chem274:17103–17108
    [Google Scholar]
  35. Veses V., Richards A., Gow N. A.. 2008; Vacuoles and fungal biology. Curr Opin Microbiol11:503–510
    [Google Scholar]
  36. Walther A., Wendland J.. 2003; An improved transformation protocol for the human fungal pathogen Candida albicans. Curr Genet42:339–343
    [Google Scholar]
  37. Walther A., Wendland J.. 2004; Polarized hyphal growth in Candida albicans requires the Wiskott–Aldrich Syndrome protein homolog Wal1p. Eukaryot Cell3:471–482
    [Google Scholar]
  38. Walther A., Wendland J.. 2008; PCR-based gene targeting in Candida albicans. Nat Protoc3:1414–1421
    [Google Scholar]
  39. Whiteway M., Bachewich C.. 2007; Morphogenesis in Candida albicans. Annu Rev Microbiol61:529–553
    [Google Scholar]
  40. Whiteway M., Oberholzer U.. 2004; Candida morphogenesis and host–pathogen interactions. Curr Opin Microbiol7:350–357
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041707-0
Loading
/content/journal/micro/10.1099/mic.0.041707-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error