%0 Journal Article %A Hendrickx, Antoni P. A. %A Schapendonk, Claudia M. E. %A van Luit-Asbroek, Miranda %A Bonten, Marc J. M. %A van Schaik, Willem %A Willems, Rob J. L. %T Differential PilA pilus assembly by a hospital-acquired and a community-derived Enterococcus faecium isolate %D 2010 %J Microbiology, %V 156 %N 9 %P 2649-2659 %@ 1465-2080 %R https://doi.org/10.1099/mic.0.041392-0 %K MSCRAMM, microbial surface component recognizing adhesive matrix molecule %K PBSb, 1 % BSA in PBS %K PGC, pilin gene cluster %K TEM, transmission immunoelectron microscopy %K CWS, cell wall sorting signal %K HSA, human serum albumin %K FACS, fluorescence-activated cell sorting %K MLST, multilocus sequence typing %K BHI, brain heart infusion %K TSA, trypticase soy agar II %I Microbiology Society, %X Pili are hair-like structures protruding from the cell envelope of bacterial cells. Here, we describe the conditional and differential display of PilA-type pili, and PilE and PilF proteins, encoded from pilin gene cluster 1 at the surface of a hospital-acquired Enterococcus faecium bloodstream isolate (E1165) and a community-derived stool isolate (E1039), at two different temperatures. Both strains have virtually identical pilA gene clusters, as determined by sequencing. Western blotting and transmission immunoelectron microscopy revealed that PilA and PilF assembled into high-molecular-mass pilus-like structures at 37 °C in the E1165 strain, whereas PilE was not produced at either of the temperatures used; at 21 °C, PilA and PilF were cell-wall-anchored proteins. In contrast, in strain E1039, PilA, PilE and PilF pilin proteins were found to be displayed as cell-wall-anchored proteins at 37 °C only, and they were not associated with pilus-like structures. The discrepancy in pilus assembly between E1039 and E1165 cannot be explained by differences in expression of the genes encoding the predicted sortases in the pilA gene cluster, as these had similar expression levels in both strains at 21 and 37 °C. Double-labelling electron microscopy revealed that PilA formed the pilus backbone in E1165, and PilF the minor subunit which was distributed along the PilA pilus shaft and positioned at the tip; however, it was deposited as a cell-wall-anchored protein in a pilA isogenic mutant. The differential deposition of surface proteins from pilin gene cluster 1 and differences in pilus assembly in the two strains suggest a complex post-transcriptional regulatory mechanism of pilus biogenesis in E. faecium. %U https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.041392-0