1887

Abstract

Pili are hair-like structures protruding from the cell envelope of bacterial cells. Here, we describe the conditional and differential display of PilA-type pili, and PilE and PilF proteins, encoded from pilin gene cluster 1 at the surface of a hospital-acquired bloodstream isolate (E1165) and a community-derived stool isolate (E1039), at two different temperatures. Both strains have virtually identical gene clusters, as determined by sequencing. Western blotting and transmission immunoelectron microscopy revealed that PilA and PilF assembled into high-molecular-mass pilus-like structures at 37 °C in the E1165 strain, whereas PilE was not produced at either of the temperatures used; at 21 °C, PilA and PilF were cell-wall-anchored proteins. In contrast, in strain E1039, PilA, PilE and PilF pilin proteins were found to be displayed as cell-wall-anchored proteins at 37 °C only, and they were not associated with pilus-like structures. The discrepancy in pilus assembly between E1039 and E1165 cannot be explained by differences in expression of the genes encoding the predicted sortases in the gene cluster, as these had similar expression levels in both strains at 21 and 37 °C. Double-labelling electron microscopy revealed that PilA formed the pilus backbone in E1165, and PilF the minor subunit which was distributed along the PilA pilus shaft and positioned at the tip; however, it was deposited as a cell-wall-anchored protein in a isogenic mutant. The differential deposition of surface proteins from pilin gene cluster 1 and differences in pilus assembly in the two strains suggest a complex post-transcriptional regulatory mechanism of pilus biogenesis in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041392-0
2010-09-01
2020-04-01
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/9/2649.html?itemId=/content/journal/micro/10.1099/mic.0.041392-0&mimeType=html&fmt=ahah

References

  1. Abbot E. L., Smith W. D., Siou G. P., Chiriboga C., Smith R. J., Wilson J. A., Hirst B. H., Kehoe M. A.. 2007; Pili mediate specific adhesion of Streptococcus pyogenes to human tonsil and skin. Cell Microbiol9:1822–1833
    [Google Scholar]
  2. Aksoy D. Y., Unal S.. 2008; New antimicrobial agents for the treatment of Gram-positive bacterial infections. Clin Microbiol Infect14:411–420
    [Google Scholar]
  3. Boekhorst J., de Been M. W., Kleerebezem M., Siezen R. J.. 2005; Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol187:4928–4934
    [Google Scholar]
  4. Budzik J. M., Oh S. Y., Schneewind O.. 2009; Sortase D forms the covalent bond that links BcpB to the tip of Bacillus cereus pili. J Biol Chem284:12989–12997
    [Google Scholar]
  5. Deivanayagam C. C., Rich R. L., Carson M., Owens R. T., Danthuluri S., Bice T., Hook M., Narayana S. V.. 2000; Novel fold and assembly of the repetitive B region of the Staphylococcus aureus collagen-binding surface protein. Structure8:67–78
    [Google Scholar]
  6. Dramsi S., Caliot E., Bonne I., Guadagnini S., Prevost M. C., Kojadinovic M., Lalioui L., Poyart C., Trieu-Cuot P.. 2006; Assembly and role of pili in group B streptococci. Mol Microbiol60:1401–1413
    [Google Scholar]
  7. Gaspar A. H., Ton-That H.. 2006; Assembly of distinct pilus structures on the surface of Corynebacterium diphtheriae . J Bacteriol188:1526–1533
    [Google Scholar]
  8. Gianfaldoni C., Censini S., Hilleringmann M., Moschioni M., Facciotti C., Pansegrau W., Masignani V., Covacci A., Rappuoli R.. other authors 2007; Streptococcus pneumoniae pilus subunits protect mice against lethal challenge. Infect Immun75:1059–1062
    [Google Scholar]
  9. Hanahan D.. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol166:557–580
    [Google Scholar]
  10. Hartford O., Francois P., Vaudaux P., Foster T. J.. 1997; The dipeptide repeat region of the fibrinogen-binding protein (clumping factor) is required for functional expression of the fibrinogen-binding domain on the Staphylococcus aureus cell surface. Mol Microbiol25:1065–1076
    [Google Scholar]
  11. Heikens E., Bonten M. J., Willems R. J.. 2007; Enterococcal surface protein Esp is important for biofilm formation of Enterococcus faecium E1162. J Bacteriol189:8233–8240
    [Google Scholar]
  12. Hendrickx A. P., Van Wamel W. J., Posthuma G., Bonten M. J., Willems R. J.. 2007; Five genes encoding surface-exposed LPXTG proteins are enriched in hospital-adapted Enterococcus faecium clonal complex 17 isolates. J Bacteriol189:8321–8332
    [Google Scholar]
  13. Hendrickx A. P., Bonten M. J., van Luit-Asbroek M., Schapendonk C. M., Kragten A. H., Willems R. J.. 2008; Expression of two distinct types of pili by a hospital-acquired Enterococcus faecium isolate. Microbiology154:3212–3223
    [Google Scholar]
  14. Hendrickx A. P., van Luit-Asbroek M., Schapendonk C. M., Van Wamel W. J., Braat J. C., Wijnands L. M., Bonten M. J., Willems R. J.. 2009a; SgrA, a nidogen-binding LPXTG surface adhesin implicated in biofilm formation, and EcbA, a collagen binding MSCRAMM, are two novel adhesins of hospital-acquired Enterococcus faecium . Infect Immun77:5097–5106
    [Google Scholar]
  15. Hendrickx A. P., Willems R. J., Bonten M. J., van Schaik W.. 2009b; LPxTG surface proteins of enterococci. Trends Microbiol17:423–430
    [Google Scholar]
  16. Hidron A. I., Edwards J. R., Patel J., Horan T. C., Sievert D. M., Pollock D. A., Fridkin S. K.. 2008; NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol29:996–1011
    [Google Scholar]
  17. Ilangovan U., Ton-That H., Iwahara J., Schneewind O., Clubb R. T.. 2001; Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus . Proc Natl Acad Sci U S A98:6056–6061
    [Google Scholar]
  18. Janulczyk R., Rasmussen M.. 2001; Improved pattern for genome-based screening identifies novel cell wall-attached proteins in Gram-positive bacteria. Infect Immun69:4019–4026
    [Google Scholar]
  19. Kainer M. A., Devasia R. A., Jones T. F., Simmons B. P., Melton K., Chow S., Broyles J., Moore K. L., Craig A. S., Schaffner W.. 2007; Response to emerging infection leading to outbreak of linezolid-resistant enterococci. Emerg Infect Dis13:1024–1030
    [Google Scholar]
  20. Leavis H., Top J., Shankar N., Borgen K., Bonten M., van Embden J., Willems R. J.. 2004; A novel putative enterococcal pathogenicity island linked to the esp virulence gene of Enterococcus faecium and associated with epidemicity. J Bacteriol186:672–682
    [Google Scholar]
  21. Leavis H. L., Willems R. J., Top J., Bonten M. J.. 2006; High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium . J Clin Microbiol44:1059–1064
    [Google Scholar]
  22. Leavis H. L., Willems R. J., Van Wamel W. J., Schuren F. H., Caspers M. P., Bonten M. J.. 2007; Insertion sequence-driven diversification creates a globally dispersed emerging multiresistant subspecies of E. faecium . PLoS Pathog3:e7
    [Google Scholar]
  23. Mandlik A., Das A., Ton-That H.. 2008; The molecular switch that activates the cell wall anchoring step of pilus assembly in Gram-positive bacteria. Proc Natl Acad Sci U S A105:14147–14152
    [Google Scholar]
  24. Marraffini L. A., Schneewind O.. 2006; Targeting proteins to the cell wall of sporulating Bacillus anthracis . Mol Microbiol62:1402–1417
    [Google Scholar]
  25. Mazmanian S. K., Liu G., Ton-That H., Schneewind O.. 1999; Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science285:760–763
    [Google Scholar]
  26. Montero C. I., Stock F., Murray P. R.. 2008; Mechanisms of resistance to daptomycin in Enterococcus faecium . Antimicrob Agents Chemother52:1167–1170
    [Google Scholar]
  27. Mora M., Bensi G., Capo S., Falugi F., Zingaretti C., Manetti A. G., Maggi T., Taddei A. R., Grandi G., Telford J. L.. 2005; Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci U S A102:15641–15646
    [Google Scholar]
  28. Murdoch D. R., Mirrett S., Harrell L. J., Monahan J. S., Reller L. B.. 2002; Sequential emergence of antibiotic resistance in enterococcal bloodstream isolates over 25 years. Antimicrob Agents Chemother46:3676–3678
    [Google Scholar]
  29. Murray B. E.. 2000; Vancomycin-resistant enterococcal infections. N Engl J Med342:710–721
    [Google Scholar]
  30. Nallapareddy S. R., Singh K. V., Murray B. E.. 2006a; Construction of improved temperature-sensitive and mobilizable vectors and their use for constructing mutations in the adhesin-encoding acm gene of poorly transformable clinical Enterococcus faecium strains. Appl Environ Microbiol72:334–345
    [Google Scholar]
  31. Nallapareddy S. R., Singh K. V., Sillanpaa J., Garsin D. A., Hook M., Erlandsen S. L., Murray B. E.. 2006b; Endocarditis and biofilm-associated pili of Enterococcus faecalis . J Clin Invest116:2799–2807
    [Google Scholar]
  32. Nelson A. L., Ries J., Bagnoli F., Dahlberg S., Falker S., Rounioja S., Tschop J., Morfeldt E., Ferlenghi I.. other authors 2007; RrgA is a pilus-associated adhesin in Streptococcus pneumoniae . Mol Microbiol66:329–340
    [Google Scholar]
  33. Power P. M., Jennings M. P.. 2003; The genetics of glycosylation in Gram-negative bacteria. FEMS Microbiol Lett218:211–222
    [Google Scholar]
  34. Schneewind O., Model P., Fischetti V. A.. 1992; Sorting of protein A to the staphylococcal cell wall. Cell70:267–281
    [Google Scholar]
  35. Schneewind O., Mihaylova-Petkov D., Model P.. 1993; Cell wall sorting signals in surface proteins of Gram-positive bacteria. EMBO J12:4803–4811
    [Google Scholar]
  36. Sillanpaa J., Nallapareddy S. R., Prakash V. P., Qin X., Hook M., Weinstock G. M., Murray B. E.. 2008; Identification and phenotypic characterization of a second collagen adhesin, Scm, and genome-based identification and analysis of 13 other predicted MSCRAMMs, including four distinct pilus loci, in Enterococcus faecium . Microbiology154:3199–3211
    [Google Scholar]
  37. Ton-That H., Schneewind O.. 2003; Assembly of pili on the surface of Corynebacterium diphtheriae . Mol Microbiol50:1429–1438
    [Google Scholar]
  38. van Schaik W., Top J., Riley D. R., Boekhorst J., Vrijenhoek J. E., Schapendonk C. M., Hendrickx A. P., Nijman I. J., Bonten M. J.. other authors 2010; Pyrosequencing-based comparative genome analysis of the nosocomial pathogen Enterococcus faecium and identification of a large transferable pathogenicity island. BMC Genomics11:239
    [Google Scholar]
  39. Werner G., Coque T. M., Hammerum A. M., Hope R., Hryniewicz W., Johnson A., Klare I., Kristinsson K. G., Leclercq R.. other authors 2008; Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill13: pii–19046
    [Google Scholar]
  40. Willems R. J., Top J., van Santen M., Robinson D. A., Coque T. M., Baquero F., Grundmann H., Bonten M. J.. 2005; Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis11:821–828
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041392-0
Loading
/content/journal/micro/10.1099/mic.0.041392-0
Loading

Data & Media loading...

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error