1887

Abstract

In Gram-negative bacteria, production of adhesion factors and extracellular polysaccharides (EPS) is promoted by the activity of diguanylate cyclases (DGCs), a class of enzymes able to catalyse the synthesis of the signal molecule bis-(3′,5′)-cyclic di-guanylic acid (c-di-GMP). In this report we show that in , overexpression of the YddV protein, but not of other DGCs such as AdrA and YcdT, induces the production of the EPS poly--acetylglucosamine (PNAG) by stimulating expression of , the PNAG-biosynthetic operon. Stimulation of PNAG production and activation of expression by the YddV protein are abolished by inactivation of its GGDEF motif, responsible for DGC activity. Consistent with the effects of YddV overexpression, inactivation of the gene negatively affects transcription and PNAG-mediated biofilm formation. regulation by the gene also takes place in a mutant carrying a partial deletion of the gene, which encodes the main regulator of expression, suggesting that YddV does not regulate through modulation of CsrA activity. Our results demonstrate that PNAG production does not simply respond to intracellular c-di-GMP concentration, but specifically requires the DGC activity of the YddV protein, thus supporting the notion that in , c-di-GMP biosynthesis by a given DGC protein triggers regulatory events that lead to activation of specific sets of EPS biosynthetic genes or proteins.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041350-0
2010-10-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/2901.html?itemId=/content/journal/micro/10.1099/mic.0.041350-0&mimeType=html&fmt=ahah

References

  1. Anderl, J. N., Franklin, M. J. & Stewart, P. S. ( 2000; ). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44, 1818–1824.[CrossRef]
    [Google Scholar]
  2. Antoniani, D., Bocci, P., Maciag, A., Raffaelli, N. & Landini, P. ( 2010; ). Monitoring of di-guanylate cyclase activity and of cyclic-di-GMP biosynthesis by whole-cell assays suitable for high-throughput screening of biofilm inhibitors. Appl Microbiol Biotechnol 85, 1095–1104.[CrossRef]
    [Google Scholar]
  3. Blattner, F. R., Plumkett, G., III, Bloch, C. A., Perna, N. T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J. D., Rode, C. K. & other authors ( 1997; ). The complete genome sequence of Escherichia coli K-12. Science 277, 1453–1462.[CrossRef]
    [Google Scholar]
  4. Boehm, A., Steiner, S., Zaehringer, F., Casanova, A., Hamburger, F., Ritz, D., Keck, W., Ackermann, M., Schirmer, T. & Jenal, U. ( 2009; ). Second messenger signalling governs Escherichia coli biofilm induction upon ribosomal stress. Mol Microbiol 72, 1500–1516.[CrossRef]
    [Google Scholar]
  5. Cerca, N. & Jefferson, K. K. ( 2008; ). Effect of growth conditions on poly-N-acetylglucosamine expression and biofilm formation in Escherichia coli. FEMS Microbiol Lett 283, 36–41.[CrossRef]
    [Google Scholar]
  6. Chin, K. H., Lee, Y. C., Tu, Z. L., Chen, C. H., Tseng, Y. H., Yang, J. M., Ryan, R. P., McCarthy, Y., Dow, J. M. & other authors ( 2010; ). The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell–cell signaling to virulence gene expression in Xanthomonas campestris. J Mol Biol 396, 646–662.[CrossRef]
    [Google Scholar]
  7. Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R. & Lappin-Scott, H. M. ( 1995; ). Microbial biofilms. Annu Rev Microbiol 49, 711–745.[CrossRef]
    [Google Scholar]
  8. Cotter, P. A. & Stibitz, S. ( 2007; ). c-di-GMP-mediated regulation of virulence and biofilm formation. Curr Opin Microbiol 10, 17–23.[CrossRef]
    [Google Scholar]
  9. Datsenko, K. A. & Wanner, B. L. ( 2000; ). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640–6645.[CrossRef]
    [Google Scholar]
  10. De, N., Pirruccello, M., Krasteva, P. V., Bae, N., Raghavan, R. V. & Sondermann, H. ( 2008; ). Phosphorylation-independent regulation of the diguanylate cyclase WspR. PLoS Biol 6, e67.[CrossRef]
    [Google Scholar]
  11. Delgado-Nixon, V. M., Gonzalez, G. & Gilles-Gonzalez, M. A. ( 2000; ). Dos, a heme-binding PAS protein from Escherichia coli, is a direct oxygen sensor. Biochemistry 39, 2685–2691.[CrossRef]
    [Google Scholar]
  12. Dorel, C., Vidal, O., Prigent-Combaret, C., Vallet, I. & Lejeune, P. ( 1999; ). Involvement of the Cpx signal transduction pathway of E. coli in biofilm formation. FEMS Microbiol Lett 178, 169–175.[CrossRef]
    [Google Scholar]
  13. Galperin, M. Y. ( 2004; ). Bacterial signal transduction network in a genomic perspective. Environ Microbiol 6, 552–567.[CrossRef]
    [Google Scholar]
  14. Goller, C., Wang, X., Itoh, Y. & Romeo, T. ( 2006; ). The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine. J Bacteriol 188, 8022–8032.[CrossRef]
    [Google Scholar]
  15. Gualdi, L., Tagliabue, L. & Landini, P. ( 2007; ). Biofilm formation-gene expression relay system in Escherichia coli: modulation of σ S-dependent gene expression by the CsgD regulatory protein via σ S protein stabilization. J Bacteriol 189, 8034–8043.[CrossRef]
    [Google Scholar]
  16. Gualdi, L., Tagliabue, L., Bertagnoli, S., Ieranò, T., De Castro, C. & Landini, P. ( 2008; ). Cellulose modulates biofilm formation by counteracting curli-mediated colonization of solid surfaces in Escherichia coli. Microbiology 154, 2017–2024.[CrossRef]
    [Google Scholar]
  17. Hammer, B. K. & Bassler, B. L. ( 2009; ). Distinct sensory pathways in Vibrio cholerae El Tor and classical biotypes modulate cyclic dimeric GMP levels to control biofilm formation. J Bacteriol 191, 169–177.[CrossRef]
    [Google Scholar]
  18. Harrison, J. J., Ceri, H. & Turner, R. J. ( 2007; ). Multimetal resistance and tolerance in microbial biofilms. Nat Rev Microbiol 5, 928–938.[CrossRef]
    [Google Scholar]
  19. Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J. & Ceri, H. ( 2009; ). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob Agents Chemother 53, 2253–2258.[CrossRef]
    [Google Scholar]
  20. Hengge, R. ( 2009; ). Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7, 263–273.[CrossRef]
    [Google Scholar]
  21. Hickman, J. W. & Harwood, C. S. ( 2008; ). Identification of FleQ from Pseudomonas aeruginosa as a c-di-GMP-responsive transcription factor. Mol Microbiol 69, 376–389.[CrossRef]
    [Google Scholar]
  22. Holland, L. M., O'Donnell, S. T., Ryjenkov, D. A., Gomelsky, L., Slater, S. R., Fey, P. D., Gomelsky, M. & O'Gara, J. P. ( 2008; ). A staphylococcal GGDEF domain protein regulates biofilm formation independently of cyclic dimeric GMP. J Bacteriol 190, 5178–5189.[CrossRef]
    [Google Scholar]
  23. Itoh, Y., Rice, J. D., Goller, C., Pannuri, A., Taylor, J., Meisner, J., Beveridge, T. J., Preston, J. F., III & Romeo, T. ( 2008; ). Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-β-1,6-N-acetyl-d-glucosamine. J Bacteriol 190, 3670–3680.[CrossRef]
    [Google Scholar]
  24. Jonas, K. A., Edwards, N., Simm, R., Romeo, T., Römling, U. & Melefors, O. ( 2008; ). The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 70, 236–257.[CrossRef]
    [Google Scholar]
  25. Kader, A., Simm, R., Gerstel, U., Morr, M. & Römling, U. ( 2006; ). Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60, 602–616.[CrossRef]
    [Google Scholar]
  26. Kaplan, J. B., Velliyagounder, K., Ragunath, C., Rohde, H., Mack, D., Knobloch, J. K. & Ramasubbu, N. ( 2004; ). Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. J Bacteriol 186, 8213–8220.[CrossRef]
    [Google Scholar]
  27. Kirillina, O., Fetherston, J. D., Bobrov, A. G., Abney, J. & Perry, R. D. ( 2004; ). HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54, 75–88.[CrossRef]
    [Google Scholar]
  28. Krasteva, P. V., Fong, J. C., Shikuma, N. J., Beyhan, S., Navarro, M. V., Yildiz, F. H. & Sondermann, H. ( 2010; ). Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP. Science 327, 866–868.[CrossRef]
    [Google Scholar]
  29. Kulasakara, H., Lee, V., Brencic, A., Liberati, N., Urbach, J., Miyata, S., Lee, D. G., Neely, A. N., Hyodo, M. & other authors ( 2006; ). Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3′-5′)-cyclic-GMP in virulence. Proc Natl Acad Sci U S A 103, 2839–2844.[CrossRef]
    [Google Scholar]
  30. Li, X. M. & Shapiro, L. J. ( 1993; ). Three step PCR mutagenesis for “linker scanning”. Nucleic Acids Res 21, 3745–3748.[CrossRef]
    [Google Scholar]
  31. Ma, Q. & Wood, T. K. ( 2009; ). OmpA influences Escherichia coli biofilm formation by repressing cellulose production through the CpxRA two-component system. Environ Microbiol 11, 2735–2746.[CrossRef]
    [Google Scholar]
  32. Méndez-Ortiz, M. M., Hyodo, M., Hayakawa, Y. & Membrillo-Hernández, J. ( 2006; ). Genome-wide transcriptional profile of Escherichia coli in response to high levels of the second messenger 3′,5′-cyclic diguanylic acid. J Biol Chem 281, 8090–8099.[CrossRef]
    [Google Scholar]
  33. Mercante, J., Suzuki, K., Cheng, X., Babitzke, P. & Romeo, T. ( 2006; ). Comprehensive alanine-scanning mutagenesis of Escherichia coli CsrA defines two subdomains of critical functional importance. J Biol Chem 281, 31832–31842.[CrossRef]
    [Google Scholar]
  34. Miller, J. H. (editor) ( 1972; ). Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
    [Google Scholar]
  35. Olsén, A., Jonsson, A. & Normark, S. ( 1989; ). Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli. Nature 338, 652–655.[CrossRef]
    [Google Scholar]
  36. Paul, R., Weiser, S., Amiot, N. C., Chan, C., Schirmer, T., Giese, B. & Jenal, U. ( 2004; ). Cell cycle-dependent dynamic localization of a bacterial response regulator with a novel di-guanylate cyclase output domain. Genes Dev 18, 715–727.[CrossRef]
    [Google Scholar]
  37. Perry, R. D., Pendrak, M. L. & Schuetze, P. ( 1990; ). Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 172, 5929–5937.
    [Google Scholar]
  38. Pesavento, C., Becker, G., Sommerfeldt, N., Possling, A., Tschowri, N., Mehlis, A. & Hengge, R. ( 2008; ). Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22, 2434–2446.[CrossRef]
    [Google Scholar]
  39. Romeo, T., Gong, M., Liu, M. Y. & Brun-Zinkernagel, A. M. ( 1993; ). Identification and molecular characterization of csrA, a pleiotropic gene from Escherichia coli that affects glycogen biosynthesis, gluconeogenesis, cell size, and surface properties. J Bacteriol 175, 4744–4755.
    [Google Scholar]
  40. Römling, U., Rohde, M., Olsén, A., Normark, S. & Reinköster, J. ( 2000; ). AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36, 10–23.[CrossRef]
    [Google Scholar]
  41. Ross, P., Mayer, R. & Benziman, M. ( 1991; ). Cellulose biosynthesis and function in bacteria. Microbiol Rev 55, 35–58.
    [Google Scholar]
  42. Schmidt, A. J., Ryjenkov, D. A. & Gomelsky, M. ( 2005; ). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: enzymatically active and inactive EAL domains. J Bacteriol 187, 4774–4781.[CrossRef]
    [Google Scholar]
  43. Simm, R., Morr, M., Kader, A., Nimtiz, M. & Römling, U. ( 2004; ). GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53, 1123–1134.[CrossRef]
    [Google Scholar]
  44. Smith, H. O. & Levine, M. ( 1964; ). Two sequential repressions of DNA synthesis in the establishment of lysogeny by phage P22 and its mutants. Proc Natl Acad Sci U S A 52, 356–363.[CrossRef]
    [Google Scholar]
  45. Solano, C., García, B., Latasa, C., Toledo-Arana, A., Zorraquino, V., Valle, J., Casals, J., Pedroso, E. & Lasa, I. ( 2009; ). Genetic reductionist approach for dissecting individual roles of GGDEF proteins within the c-di-GMP signaling network in Salmonella. Proc Natl Acad Sci U S A 106, 7997–8002.[CrossRef]
    [Google Scholar]
  46. Sommerfeldt, N., Possling, A., Becker, G., Pesavento, C., Tschowri, N. & Hengge, R. ( 2009; ). Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli. Microbiology 155, 1318–1331.[CrossRef]
    [Google Scholar]
  47. Sudarsan, N., Lee, E. R., Weinberg, Z., Moy, R. H., Kim, J. N., Link, K. H. & Breaker, R. R. ( 2008; ). Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321, 411–413.[CrossRef]
    [Google Scholar]
  48. Suzuki, K., Babitzke, P., Kushner, S. R. & Romeo, T. ( 2006; ). Identification of a novel regulatory protein (CsrD) that targets the global regulatory RNAs CsrB and CsrC for degradation by RNase E. Genes Dev 20, 2605–2617.[CrossRef]
    [Google Scholar]
  49. Tagliabue, L., Maciag, A., Antoniani, D. & Landini, P. ( 2010; ). The yddV-dos operon controls biofilm formation through regulation of genes encoding curli fibers' subunits in aerobically-growing Escherichia coli. FEMS Immunol Med Microbiol 59, 477–484.
    [Google Scholar]
  50. Tuckerman, J. R., Gonzalez, G., Sousa, E. H., Wan, X., Saito, J. A., Alam, M. & Gilles-Gonzalez, M. A. ( 2009; ). An oxygen-sensing diguanylate cyclase and phosphodiesterase couple for c-di-GMP control. Biochemistry 48, 9764–9774.[CrossRef]
    [Google Scholar]
  51. Wang, X., Preston, J. F., III & Romeo, T. ( 2004; ). The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186, 2724–2734.[CrossRef]
    [Google Scholar]
  52. Wang, X., Dubey, A. K., Suzuki, K., Baker, C. S., Babitzke, P. & Romeo, T. ( 2005; ). CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesion of Escherichia coli. Mol Microbiol 56, 1648–1663.[CrossRef]
    [Google Scholar]
  53. Weber, H., Pesavento, C., Possling, A., Tischendorf, G. & Hengge, R. ( 2006; ). Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol 62, 1014–1034.[CrossRef]
    [Google Scholar]
  54. Zogaj, X., Nimtz, M., Rohde, M., Bokranz, W. & Römling, U. ( 2001; ). The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39, 1452–1463.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041350-0
Loading
/content/journal/micro/10.1099/mic.0.041350-0
Loading

Data & Media loading...

Supplements

[PDF](56 KB)

PDF

[PDF](38 KB)

PDF

Surface adhesion on polystyrene microtitre plates by strains carrying the pGEM-T Easy control vector, pAdrA, pYcdT and pYdaM [PDF](39 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error