1887

Abstract

The Patagonian fungal endophyte NRRL 50072 is reported to produce a variety of medium-chain and highly branched volatile organic compounds (VOCs) that have been highlighted for their potential as fuel alternatives and are collectively termed myco-diesel. To assess the novelty of this observation, we determined the extent to which ten closely related Ascocoryne strains from commercial culture collections possess similar VOC production capability. DNA sequencing established a high genetic similarity between NRRL 50072 and each Ascocoryne isolate, consistent with its reassignment as . The Ascocoryne strains did not produce highly branched medium-chain-length alkanes, and efforts to reproduce the branched alkane production of NRRL 50072 were unsuccessful. However, we confirmed the production of 30 other products and expanded the list of VOCs for NRRL 50072 and members of the genus . VOCs detected from the cultures consisted of short- and medium-chain alkenes, ketones, esters and alcohols and several sesquiterpenes. Ascocoryne strains NRRL 50072 and CBS 309.71 produced a more diverse range of volatiles than the other isolates tested. CBS 309.71 also showed enhanced production compared with other strains when grown on cellulose agar. Collectively, the members of the genus demonstrated production of over 100 individual compounds, with a third of the short- and medium-chain compounds also produced when cultures were grown on a cellulose substrate. This comparative production analysis could facilitate future studies to identify and manipulate the biosynthetic machinery responsible for production of individual VOCs, including several that have a potential application as biofuels.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041327-0
2010-12-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/12/3814.html?itemId=/content/journal/micro/10.1099/mic.0.041327-0&mimeType=html&fmt=ahah

References

  1. Atsumi, S., Hanai, T. & Liao, J. C. ( 2008; ). Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89.[CrossRef]
    [Google Scholar]
  2. Atsumi, S., Li, Z. & Liao, J. C. ( 2009; ). Acetolactate synthase from Bacillus subtilis serves as a 2-ketoisovalerate decarboxylase for isobutanol biosynthesis in Escherichia coli. Appl Environ Microbiol 75, 6306–6311.[CrossRef]
    [Google Scholar]
  3. Bunyard, B. A., Wang, Z., Malloch, D., Clayden, S. & Voitk, A. ( 2008; ). New North American Records for Ascocoryne turficola (Ascomycota: Helotiales). FUNGI Magazine 1, 23–31.
    [Google Scholar]
  4. Christianson, D. W. ( 2008; ). Unearthing the roots of the terpenome. Curr Opin Chem Biol 12, 141–150.[CrossRef]
    [Google Scholar]
  5. Connor, M. R., Cann, A. F. & Liao, J. C. ( 2010; ). 3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation. Appl Microbiol Biotechnol 86, 1155–1164.[CrossRef]
    [Google Scholar]
  6. Edgar, R. C. ( 2004; ). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797.[CrossRef]
    [Google Scholar]
  7. Fiedler, K., Schutz, E. & Geh, S. ( 2001; ). Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204, 111–121.[CrossRef]
    [Google Scholar]
  8. Fortman, J. L., Chhabra, S., Mukhopadhyay, A., Chou, H., Lee, T. S., Steen, E. & Keasling, J. D. ( 2008; ). Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26, 375–381.[CrossRef]
    [Google Scholar]
  9. Hill, J., Nelson, E., Tilman, D., Polasky, S. & Tiffany, D. ( 2006; ). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103, 11206–11210.[CrossRef]
    [Google Scholar]
  10. Korpi, A., Jarnberg, J. & Pasanen, A. L. ( 2009; ). Microbial volatile organic compounds. Crit Rev Toxicol 39, 139–193.[CrossRef]
    [Google Scholar]
  11. Ladygina, N., Dedyukhina, E. G. & Vainshtein, M. B. ( 2006; ). A review on microbial synthesis of hydrocarbons. Process Biochem 41, 1001–1014.[CrossRef]
    [Google Scholar]
  12. Larsen, T. O. & Frisvad, J. C. ( 1995; ). Characterization of volatile metabolites from 47 Penicillium taxa. Mycol Res 99, 1153–1166.[CrossRef]
    [Google Scholar]
  13. McAfee, B. J. & Taylor, A. ( 1999; ). A review of the volatile metabolites of fungi found on wood substrates. Nat Toxins 7, 283–303.[CrossRef]
    [Google Scholar]
  14. Minerdi, D., Bossi, S., Gullino, M. L. & Garibaldi, A. ( 2009; ). Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol 11, 844–854.[CrossRef]
    [Google Scholar]
  15. Müller, M. M. & Hallaksela, A. M. ( 1994; ). Variation in combined fatty acid and sterol profiles of Ascocoryne, Nectria, and Neobulgaria-strains isolated from Norway spruce. Eur J Forest Pathol 24, 11–19.[CrossRef]
    [Google Scholar]
  16. Müller, M. M. & Hallaksela, A. M. ( 2000; ). Fungal diversity in Norway spruce: a case study. Mycol Res 104, 1139–1145.[CrossRef]
    [Google Scholar]
  17. Müller, M. M., Kantola, R. & Kitunen, V. ( 1994; ). Combining sterol and fatty-acid profiles for the characterization of fungi. Mycol Res 98, 593–603.[CrossRef]
    [Google Scholar]
  18. Paranagama, P. A., Wijeratne, E. M. & Gunatilaka, A. A. ( 2007; ). Uncovering biosynthetic potential of plant-associated fungi: effect of culture conditions on metabolite production by Paraphaeosphaeria quadriseptata and Chaetomium chiversii. J Nat Prod 70, 1939–1945.[CrossRef]
    [Google Scholar]
  19. Pavlidis, T., Ilieva, M., Bencheva, S. & Stancheva, J. ( 2005; ). Researches on wood-destroying fungi division Ascomycota, classis Ascomycetes. Matica Srpska Proc Nat Sci 109, 143–148.
    [Google Scholar]
  20. Peralta-Yahya, P. P. & Keasling, J. D. ( 2010; ). Advanced biofuel production in microbes. Biotechnol J 5, 147–162.[CrossRef]
    [Google Scholar]
  21. Pinkerton, F. & Strobel, G. ( 1976; ). Serinol as an activator of toxin production in attenuated cultures of Helminthosporium sacchari. Proc Natl Acad Sci U S A 73, 4007–4011.[CrossRef]
    [Google Scholar]
  22. Rambaut, A. ( 2008; ). FigTree: Tree Figure Drawing Tool, version 1.1.2. Available at http://tree.bio.ed.ac.uk/software/figtree/. Institute of Evolutionary Biology, University of Edinburgh, UK.
  23. Rehner, S. A. & Samuels, G. J. ( 1994; ). Taxonomy and phylogeny of Gliocladium analyzed from nuclear large subunit ribosomal DNA-sequences. Mycol Res 98, 625–634.[CrossRef]
    [Google Scholar]
  24. Roll-Hansen, F. & Roll-Hansen, H. ( 1979; ). Ascocoryne sarcoides and Ascocoryne cylichnium. Descriptions and comparison. Norw J Bot 26, 193–206.
    [Google Scholar]
  25. Roll-Hansen, F. & Roll-Hansen, H. ( 1980; ). Microorganisms which invade Picea abies in seasonal stem wounds. II. Ascomycetes, fungi imperfecti, and bacteria. General discussion, Hymenomycetes included. Eur J Forest Pathol 10, 396–410.[CrossRef]
    [Google Scholar]
  26. Ronquist, F. & Huelsenbeck, J. P. ( 2003; ). mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.[CrossRef]
    [Google Scholar]
  27. Rude, M. A. & Schirmer, A. ( 2009; ). New microbial fuels: a biotech perspective. Curr Opin Microbiol 12, 274–281.[CrossRef]
    [Google Scholar]
  28. Schuchardt, S. & Kruse, H. ( 2009; ). Quantitative volatile metabolite profiling of common indoor fungi: relevancy for indoor air analysis. J Basic Microbiol 49, 350–362.[CrossRef]
    [Google Scholar]
  29. Schulz, S. & Dickschat, J. S. ( 2007; ). Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24, 814–842.[CrossRef]
    [Google Scholar]
  30. Setkova, L., Risticevic, S. & Pawliszyn, J. ( 2007; ). Rapid headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction. I. Method development and optimization. J Chromatogr A 1147, 213–223.[CrossRef]
    [Google Scholar]
  31. Smith, S. A. & Dunn, C. W. ( 2008; ). Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24, 715–716.[CrossRef]
    [Google Scholar]
  32. Stinson, M., Ezra, D., Hess, W. M., Sears, J. & Strobel, G. ( 2003; ). An endophytic Gliocladium sp. of Eucryphia cordifolia producing selective volatile antimicrobial compounds. Plant Sci 165, 913–922.[CrossRef]
    [Google Scholar]
  33. Strobel, G. ( 2006; ). Muscodor albus and its biological promise. J Ind Microbiol Biotechnol 33, 514–522.[CrossRef]
    [Google Scholar]
  34. Strobel, G. A., Dirkse, E., Sears, J. & Markworth, C. ( 2001; ). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147, 2943–2950.
    [Google Scholar]
  35. Strobel, G. A., Knighton, B., Kluck, K., Ren, Y., Livinghouse, T., Griffin, M., Spakowicz, D. & Sears, J. ( 2008; ). The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154, 3319–3328.[CrossRef]
    [Google Scholar]
  36. Tholl, D., Chen, F., Petri, J., Gershenzon, J. & Pichersky, E. ( 2005; ). Two sesquiterpene synthases are responsible for the complex mixture of sesquiterpenes emitted from Arabidopsis flowers. Plant J 42, 757–771.[CrossRef]
    [Google Scholar]
  37. Van Lancker, F., Adams, A., Delmulle, B., De Saeger, S., Moretti, A., Van Peteghem, C. & De Kimpe, N. ( 2008; ). Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J Environ Monit 10, 1127–1133.[CrossRef]
    [Google Scholar]
  38. Wang, Z., Binder, M., Schoch, C. L., Johnston, P. R., Spatafora, J. W. & Hibbett, D. S. ( 2006; ). Evolution of helotialean fungi (Leotiomycetes, Pezizomycotina): a nuclear rDNA phylogeny. Mol Phylogenet Evol 41, 295–312.[CrossRef]
    [Google Scholar]
  39. Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. ( 2009; ). Jalview Version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191.[CrossRef]
    [Google Scholar]
  40. Wheatley, R., Hackett, Ch., Bruce, A. & Kundzewicz, A. ( 1997; ). Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int Biodeterior Biodegrad 39, 199–205.[CrossRef]
    [Google Scholar]
  41. White, T. J., Burns, T., Lee, S. & Taylor, J. ( 1990; ). Amplification and sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR protocols: A guide to methods and applications, pp. 315–322. Edited by Innis, M. A., Gelfand, D. H., Sninsky, J. J. & White, T. J.. San Diego. : Academic Press.
    [Google Scholar]
  42. Wihlborg, R., Pippitt, D. & Marsili, R. ( 2008; ). Headspace sorptive extraction and GC-TOF/MS for the identification of volatile fungal metabolites. J Microbiol Methods 75, 244–250.[CrossRef]
    [Google Scholar]
  43. Zhang, K., Sawaya, M. R., Eisenberg, D. S. & Liao, J. C. ( 2008; ). Expanding metabolism for biosynthesis of nonnatural alcohols. Proc Natl Acad Sci U S A 105, 20653–20658.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041327-0
Loading
/content/journal/micro/10.1099/mic.0.041327-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error