1887

Abstract

For the optimization of microbial production processes, the choice of the quantitative phenotype to be optimized is crucial. For instance, for the optimization of product formation, either product concentration or productivity can be pursued, potentially resulting in different targets for strain improvement. The choice of a quantitative phenotype is highly relevant for classical improvement approaches, and even more so for modern systems biology approaches. In this study, the information content of a metabolomics dataset was determined with respect to different quantitative phenotypes related to the formation of specific products. To this end, the production of two industrially relevant products by was evaluated: (i) the enzyme glucoamylase, and (ii) the more complex product group of secreted proteases, consisting of multiple enzymes. For both products, six quantitative phenotypes associated with activity and productivity were defined, also taking into account different time points of sampling during the fermentation. Both linear and nonlinear relationships between the metabolome data and the different quantitative phenotypes were considered. The multivariate data analysis tool partial least-squares (PLS) was used to evaluate the information content of the datasets for all the different quantitative phenotypes defined. Depending on the product studied, different quantitative phenotypes were found to have the highest information content in specific metabolomics datasets. A detailed analysis of the metabolites that showed strong correlation with these quantitative phenotypes revealed that various sugar derivatives correlated with glucoamylase activity. For the reduction of protease activity, mainly as-yet-unidentified compounds correlated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041244-0
2011-01-01
2020-06-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/147.html?itemId=/content/journal/micro/10.1099/mic.0.041244-0&mimeType=html&fmt=ahah

References

  1. Bennett J. W., Lasure L. L.. 1991; Growth media. In More Gene Manipulations in Fungi pp441–447 Edited by Bennett J. W., Lasure L. L.. San Diego, CA: Academic Press;
    [Google Scholar]
  2. Bijlsma S., Bobeldijk I., Verheij E. R., Ramaker R., Kochhar S., Macdonald I. A., van Ommen B., Smilde A. K.. 2006; Large scale human metabolomics studies. A strategy for data (pre-) processing and validation. Anal Chem78:567–574
    [Google Scholar]
  3. Bos C. J., Debets A. J. M., Swart K., Huybers A., Kobus G., Slakhorst S. M.. 1988; Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger . Curr Genet14:437–443
    [Google Scholar]
  4. Braaksma M., Smilde A. K., van der Werf M. J., Punt P. J.. 2009; The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger . Microbiology155:3430–3439
    [Google Scholar]
  5. Braaksma M., van den Berg R. A., van der Werf M. J., Punt P. J.. 2010; A top-down systems biology approach for the identification of targets for fungal strain and process development. In Cellular and Molecular Biology of Filamentous Fungi pp25–35 Edited by Borkovich K. A., Ebbole D. J.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Braaksma M., Martens-Uzunova E. S., Punt P. J., Schaap P. J.. 2010; An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics11:584
    [Google Scholar]
  7. Coulier L., Bas R., Jespersen S., Verheij E., van der Werf M. J., Hankemeier T.. 2006; Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem78:6573–6582
    [Google Scholar]
  8. Jin Y., Bok J. W., Guzman-de-Peña D., Keller N. P.. 2002; Requirement of spermidine for developmental transitions in Aspergillus nidulans . Mol Microbiol46:801–812
    [Google Scholar]
  9. Kennedy M., Krouse D.. 1999; Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol23:456–475
    [Google Scholar]
  10. Koek M. M., Muilwijk B., van der Werf M. J., Hankemeier T.. 2006; Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem78:1272–1281
    [Google Scholar]
  11. Melzer G., Dalpiaz A., Grote A., Kucklick M., Göcke Y., Jonas R., Dersch P., Franco-Lara E., Nörtemann B., Hempel D. C.. 2007; Metabolic flux analysis using stoichiometric models for Aspergillus niger : comparison under glucoamylase-producing and non-producing conditions. J Biotechnol132:405–417
    [Google Scholar]
  12. Nikolov Z. L., Meagher M. M., Reilly P. J.. 1989; Kinetics, equilibria, and modeling of the formation of oligosaccharides from d-glucose with Aspergillus niger glucoamylases I and II. Biotechnol Bioeng34:694–704
    [Google Scholar]
  13. Pedersen H., Beyer M., Nielsen J.. 2000; Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger . Appl Microbiol Biotechnol53:272–277
    [Google Scholar]
  14. Pieterse B., Jellema R. H., van der Werf M. J.. 2006; Quenching of microbial samples for increased reliability of microarray data. J Microbiol Methods64:207–216
    [Google Scholar]
  15. Rubingh C. M., Bijlsma S., Jellema R. H., Overkamp K. M., van der Werf M. J., Smilde A. K.. 2009; Analyzing longitudinal microbial metabolomics data. J Proteome Res8:4319–4327
    [Google Scholar]
  16. Ruijter G. J. G., Visser J.. 1996; Determination of intermediary metabolites in Aspergillus niger . J Microbiol Methods3:295–302
    [Google Scholar]
  17. Schrickx J. M., Krave A. S., Verdoes J. C., van den Hondel C. A. M. J. J., Stouthamer A. H., van Verseveld H. W.. 1993; Growth and product formation in chemostat and recycling cultures by Aspergillus niger N402 and a glucoamylase overproducing transformant, provided with multiple copies of the glaA gene. J Gen Microbiol139:2801–2810
    [Google Scholar]
  18. Swift R. J., Karandikar A., Griffen A. M., Punt P. J., van den Hondel C. A. M. J. J., Robson G. D., Trinci A. P. J., Wiebe M. G.. 2000; The effect of organic nitrogen sources on recombinant glucoamylase production by Aspergillus niger in chemostat culture. Fungal Genet Biol31:125–133
    [Google Scholar]
  19. Tabor C. W., Tabor H.. 1985; Polyamines in microorganisms. Microbiol Rev49:81–99
    [Google Scholar]
  20. Tsang A., Butler G., Powlowski J., Panisko E. A., Baker S. E.. 2009; Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol46:S153–S160
    [Google Scholar]
  21. van den Berg R. A., Hoefsloot H. C., Westerhuis J. A., Smilde A. K., van der Werf M. J.. 2006; Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics7:142
    [Google Scholar]
  22. van der Greef J., Vogels J. T. W. E., Wulfert F., Tas A. C.. 2004; Method and system for identifying and quantifying chemical components of a mixture. US Patent 267459
    [Google Scholar]
  23. van der Werf M. J.. 2005; Towards replacing closed with open target selection strategies. Trends Biotechnol23:11–16
    [Google Scholar]
  24. van der Werf M. J., Overkamp K. M., Muilwijk B., Coulier L., Hankemeier T.. 2007; Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem370:17–25
    [Google Scholar]
  25. Vogels J. T. W. E., Tas A. C., Venekamp J., van der Greef J.. 1996; Partial linear fit: a new NMR spectroscopy preprocessing tool for pattern recognition applications. J Chemometr10:425–438
    [Google Scholar]
  26. Wang Y., Xue W., Sims A. H., Zhao C., Wang A., Tang G., Qin J., Wang H.. 2008; Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol45:17–27
    [Google Scholar]
  27. White S., McIntyre M., Berry D. R., McNeil B.. 2002; The autolysis of industrial filamentous fungi. Crit Rev Biotechnol22:1–14
    [Google Scholar]
  28. Withers J. M., Swift R. J., Wiebe M. G., Robson G. D., Punt P. J., van den Hondel C. A. M. J. J., Trinci A. P. J.. 1998; Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture. Biotechnol Bioeng59:407–418
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041244-0
Loading
/content/journal/micro/10.1099/mic.0.041244-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error