1887

Abstract

For the optimization of microbial production processes, the choice of the quantitative phenotype to be optimized is crucial. For instance, for the optimization of product formation, either product concentration or productivity can be pursued, potentially resulting in different targets for strain improvement. The choice of a quantitative phenotype is highly relevant for classical improvement approaches, and even more so for modern systems biology approaches. In this study, the information content of a metabolomics dataset was determined with respect to different quantitative phenotypes related to the formation of specific products. To this end, the production of two industrially relevant products by was evaluated: (i) the enzyme glucoamylase, and (ii) the more complex product group of secreted proteases, consisting of multiple enzymes. For both products, six quantitative phenotypes associated with activity and productivity were defined, also taking into account different time points of sampling during the fermentation. Both linear and nonlinear relationships between the metabolome data and the different quantitative phenotypes were considered. The multivariate data analysis tool partial least-squares (PLS) was used to evaluate the information content of the datasets for all the different quantitative phenotypes defined. Depending on the product studied, different quantitative phenotypes were found to have the highest information content in specific metabolomics datasets. A detailed analysis of the metabolites that showed strong correlation with these quantitative phenotypes revealed that various sugar derivatives correlated with glucoamylase activity. For the reduction of protease activity, mainly as-yet-unidentified compounds correlated.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041244-0
2011-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/1/147.html?itemId=/content/journal/micro/10.1099/mic.0.041244-0&mimeType=html&fmt=ahah

References

  1. Bennett, J. W. & Lasure, L. L. ( 1991; ). Growth media. In More Gene Manipulations in Fungi, pp. 441–447. Edited by Bennett, J. W. & Lasure, L. L.. San Diego, CA. : Academic Press.
    [Google Scholar]
  2. Bijlsma, S., Bobeldijk, I., Verheij, E. R., Ramaker, R., Kochhar, S., Macdonald, I. A., van Ommen, B. & Smilde, A. K. ( 2006; ). Large scale human metabolomics studies. A strategy for data (pre-) processing and validation. Anal Chem 78, 567–574.[CrossRef]
    [Google Scholar]
  3. Bos, C. J., Debets, A. J. M., Swart, K., Huybers, A., Kobus, G. & Slakhorst, S. M. ( 1988; ). Genetic analysis and the construction of master strains for assignment of genes to six linkage groups in Aspergillus niger. Curr Genet 14, 437–443.[CrossRef]
    [Google Scholar]
  4. Braaksma, M., Smilde, A. K., van der Werf, M. J. & Punt, P. J. ( 2009; ). The effect of environmental conditions on extracellular protease activity in controlled fermentations of Aspergillus niger. Microbiology 155, 3430–3439.[CrossRef]
    [Google Scholar]
  5. Braaksma, M., van den Berg, R. A., van der Werf, M. J. & Punt, P. J. ( 2010; ). A top-down systems biology approach for the identification of targets for fungal strain and process development. In Cellular and Molecular Biology of Filamentous Fungi, pp. 25–35. Edited by Borkovich, K. A. & Ebbole, D. J.. Washington, DC. : American Society for Microbiology.
    [Google Scholar]
  6. Braaksma, M., Martens-Uzunova, E. S., Punt, P. J. & Schaap, P. J. ( 2010; ). An inventory of the Aspergillus niger secretome by combining in silico predictions with shotgun proteomics data. BMC Genomics 11, 584.[CrossRef]
    [Google Scholar]
  7. Coulier, L., Bas, R., Jespersen, S., Verheij, E., van der Werf, M. J. & Hankemeier, T. ( 2006; ). Simultaneous quantitative analysis of metabolites using ion-pair liquid chromatography-electrospray ionization mass spectrometry. Anal Chem 78, 6573–6582.[CrossRef]
    [Google Scholar]
  8. Jin, Y., Bok, J. W., Guzman-de-Peña, D. & Keller, N. P. ( 2002; ). Requirement of spermidine for developmental transitions in Aspergillus nidulans. Mol Microbiol 46, 801–812.[CrossRef]
    [Google Scholar]
  9. Kennedy, M. & Krouse, D. ( 1999; ). Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol 23, 456–475.[CrossRef]
    [Google Scholar]
  10. Koek, M. M., Muilwijk, B., van der Werf, M. J. & Hankemeier, T. ( 2006; ). Microbial metabolomics with gas chromatography/mass spectrometry. Anal Chem 78, 1272–1281.[CrossRef]
    [Google Scholar]
  11. Melzer, G., Dalpiaz, A., Grote, A., Kucklick, M., Göcke, Y., Jonas, R., Dersch, P., Franco-Lara, E., Nörtemann, B. & Hempel, D. C. ( 2007; ). Metabolic flux analysis using stoichiometric models for Aspergillus niger: comparison under glucoamylase-producing and non-producing conditions. J Biotechnol 132, 405–417.[CrossRef]
    [Google Scholar]
  12. Nikolov, Z. L., Meagher, M. M. & Reilly, P. J. ( 1989; ). Kinetics, equilibria, and modeling of the formation of oligosaccharides from d-glucose with Aspergillus niger glucoamylases I and II. Biotechnol Bioeng 34, 694–704.[CrossRef]
    [Google Scholar]
  13. Pedersen, H., Beyer, M. & Nielsen, J. ( 2000; ). Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of Aspergillus niger. Appl Microbiol Biotechnol 53, 272–277.[CrossRef]
    [Google Scholar]
  14. Pieterse, B., Jellema, R. H. & van der Werf, M. J. ( 2006; ). Quenching of microbial samples for increased reliability of microarray data. J Microbiol Methods 64, 207–216.[CrossRef]
    [Google Scholar]
  15. Rubingh, C. M., Bijlsma, S., Jellema, R. H., Overkamp, K. M., van der Werf, M. J. & Smilde, A. K. ( 2009; ). Analyzing longitudinal microbial metabolomics data. J Proteome Res 8, 4319–4327.[CrossRef]
    [Google Scholar]
  16. Ruijter, G. J. G. & Visser, J. ( 1996; ). Determination of intermediary metabolites in Aspergillus niger. J Microbiol Methods 3, 295–302.
    [Google Scholar]
  17. Schrickx, J. M., Krave, A. S., Verdoes, J. C., van den Hondel, C. A. M. J. J., Stouthamer, A. H. & van Verseveld, H. W. ( 1993; ). Growth and product formation in chemostat and recycling cultures by Aspergillus niger N402 and a glucoamylase overproducing transformant, provided with multiple copies of the glaA gene. J Gen Microbiol 139, 2801–2810.[CrossRef]
    [Google Scholar]
  18. Swift, R. J., Karandikar, A., Griffen, A. M., Punt, P. J., van den Hondel, C. A. M. J. J., Robson, G. D., Trinci, A. P. J. & Wiebe, M. G. ( 2000; ). The effect of organic nitrogen sources on recombinant glucoamylase production by Aspergillus niger in chemostat culture. Fungal Genet Biol 31, 125–133.[CrossRef]
    [Google Scholar]
  19. Tabor, C. W. & Tabor, H. ( 1985; ). Polyamines in microorganisms. Microbiol Rev 49, 81–99.
    [Google Scholar]
  20. Tsang, A., Butler, G., Powlowski, J., Panisko, E. A. & Baker, S. E. ( 2009; ). Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol 46, S153–S160.[CrossRef]
    [Google Scholar]
  21. van den Berg, R. A., Hoefsloot, H. C., Westerhuis, J. A., Smilde, A. K. & van der Werf, M. J. ( 2006; ). Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 7, 142.[CrossRef]
    [Google Scholar]
  22. van der Greef, J., Vogels, J. T. W. E., Wulfert, F. & Tas, A. C. ( 2004; ). Method and system for identifying and quantifying chemical components of a mixture. US Patent 267459.
  23. van der Werf, M. J. ( 2005; ). Towards replacing closed with open target selection strategies. Trends Biotechnol 23, 11–16.[CrossRef]
    [Google Scholar]
  24. van der Werf, M. J., Overkamp, K. M., Muilwijk, B., Coulier, L. & Hankemeier, T. ( 2007; ). Microbial metabolomics: toward a platform with full metabolome coverage. Anal Biochem 370, 17–25.[CrossRef]
    [Google Scholar]
  25. Vogels, J. T. W. E., Tas, A. C., Venekamp, J. & van der Greef, J. ( 1996; ). Partial linear fit: a new NMR spectroscopy preprocessing tool for pattern recognition applications. J Chemometr 10, 425–438.[CrossRef]
    [Google Scholar]
  26. Wang, Y., Xue, W., Sims, A. H., Zhao, C., Wang, A., Tang, G., Qin, J. & Wang, H. ( 2008; ). Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol 45, 17–27.[CrossRef]
    [Google Scholar]
  27. White, S., McIntyre, M., Berry, D. R. & McNeil, B. ( 2002; ). The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22, 1–14.[CrossRef]
    [Google Scholar]
  28. Withers, J. M., Swift, R. J., Wiebe, M. G., Robson, G. D., Punt, P. J., van den Hondel, C. A. M. J. J. & Trinci, A. P. J. ( 1998; ). Optimization and stability of glucoamylase production by recombinant strains of Aspergillus niger in chemostat culture. Biotechnol Bioeng 59, 407–418.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041244-0
Loading
/content/journal/micro/10.1099/mic.0.041244-0
Loading

Data & Media loading...

Overview of the experimental conditions, a detailed description of the phenotype definitions and a complete overview of the phenotypic values corresponding to each metabolome sample [Excel file](78 KB)

EXCEL

Comparison of the overlap between top 20s of several PLS models with a greater than or equal to 0.6 for both products [Excel file](70 KB)

EXCEL

Overview of the cross validation values ( ) of the PLS models made for extracellular citric acid [PDF](15 KB)

PDF

[PDF](8 KB)

PDF

[PDF](143 KB)

PDF

[PDF](319 KB)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error