1887

Abstract

We have investigated the response of the cyanobacterium sp. PCC 6803 during growth at very low O concentration (bubbled with 99.9 % N/0.1 % CO). Significant transcriptional changes upon low-O incubation included upregulation of a cluster of genes that contained and an operon that includes a gene encoding the two-component regulatory histidine kinase, Hik31. This regulatory cluster is of particular interest, since there are virtually identical copies on both the chromosome and plasmid pSYSX. We used a knockout mutant lacking the chromosomal copy of and studied differential transcription during the aerobic–low-O transition in this ΔHik31 strain and the wild-type. We observed two distinct responses to this transition, one Hik31 dependent, the other Hik31 independent. The Hik31-independent responses included the induction and genes involved in chlorophyll biosynthesis. In addition, there were changes in a number of genes that may be involved in assembling or stabilizing photosystem (PS)II, and the operon and the LexA-like protein (Sll1626) were upregulated during low-O growth. This family of responses mostly focused on PSII and overall redox control. There was also a large set of genes that responded differently in the absence of the chromosomal Hik31. In the vast majority of these cases, Hik31 functioned as a repressor and transcription was enhanced when Hik31 was deleted. Genes in this category encoded both core and peripheral proteins for PSI and PSII, the main phycobilisome proteins, chaperones, the ATP synthase cluster and virtually all of the ribosomal proteins. These findings, coupled with the fact that ΔHik31 grew better than the wild-type under low-O conditions, suggested that Hik31 helps to regulate growth and overall cellular homeostasis. We detected changes in the transcription of other regulatory genes that may compensate for the loss of Hik31. We conclude that Hik31 regulates an important series of genes that relate to energy production and growth and that help to determine how responds to changes in O conditions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.041053-0
2011-02-01
2020-01-26
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/301.html?itemId=/content/journal/micro/10.1099/mic.0.041053-0&mimeType=html&fmt=ahah

References

  1. Allakhverdiev, S. I., Kinoshita, M., Inaba, M., Suzuki, I. & Murata, N. ( 2001; ). Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt-induced damage in Synechococcus. Plant Physiol 125, 1842–1853.[CrossRef]
    [Google Scholar]
  2. Anbudurai, P. R., Mor, T. S., Ohad, I., Shestakov, S. V. & Pakrasi, H. B. ( 1994; ). The ctpA gene encodes the C-terminal processing protease for the D1 protein of the photosystem-II reaction-center complex. Proc Natl Acad Sci U S A 91, 8082–8086.[CrossRef]
    [Google Scholar]
  3. Ashby, M. K. & Houmard, J. ( 2006; ). Cyanobacterial two-component proteins: structure, diversity, distribution, and evolution. Microbiol Mol Biol Rev 70, 472–509.[CrossRef]
    [Google Scholar]
  4. Badarau, A., Firbank, S. J., Waldron, K. J., Yanagisawa, S., Robinson, N. J., Banfield, M. J. & Dennison, C. ( 2008; ). FutA2 is a ferric binding protein from Synechocystis PCC 6803. J Biol Chem 283, 12520–12527.[CrossRef]
    [Google Scholar]
  5. Beuf, L., Bedu, S., Durand, M. C. & Joset, F. ( 1994; ). A protein involved in coordinated regulation of inorganic carbon and glucose-metabolism in the facultative photoautotrophic cyanobacterium Synechocystis PCC 6803. Plant Mol Biol 25, 855–864.[CrossRef]
    [Google Scholar]
  6. Bishop, C. L., Ulas, S., Baena-Gonzalez, E., Aro, E. M., Purton, S., Nugent, J. H. A. & Maenpaa, P. ( 2007; ). The PsbZ subunit of photosystem II in Synechocystis sp. PCC 6803 modulates electron flow through the photosynthetic electron transfer chain. Photosynth Res 93, 139–147.[CrossRef]
    [Google Scholar]
  7. Eriksson, M. J. & Clarke, A. K. ( 1996; ). The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus sp strain PCC 7942. J Bacteriol 178, 4839–4846.
    [Google Scholar]
  8. Foster, J. S., Singh, A. K., Rothschild, L. J. & Sherman, L. A. ( 2007; ). Growth-phase dependent differential gene expression in Synechocystis sp. strain PCC 6803 and regulation by a group 2 sigma factor. Arch Microbiol 187, 265–279.[CrossRef]
    [Google Scholar]
  9. Gill, R. T., Katsoulakis, E., Schmitt, W., Taroncher-Oldenburg, G., Misra, J. & Stephanopoulos, G. ( 2002; ). Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J Bacteriol 184, 3671–3681.[CrossRef]
    [Google Scholar]
  10. Gutekunst, K., Phunpruch, S., Schwarz, C., Schuchardt, S., Schulz-Friedrich, R. & Appel, J. ( 2005; ). LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58, 810–823.[CrossRef]
    [Google Scholar]
  11. Helman, Y., Tchernov, D., Reinhold, L., Shibata, M., Ogawa, T., Schwarz, R., Ohad, I. & Kaplan, A. ( 2003; ). Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13, 230–235.[CrossRef]
    [Google Scholar]
  12. Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A. & Ikeuchi, M. ( 2001; ). DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13, 793–806.[CrossRef]
    [Google Scholar]
  13. Hihara, Y., Sonoike, K., Kanehisa, M. & Ikeuchi, M. ( 2003; ). DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185, 1719–1725.[CrossRef]
    [Google Scholar]
  14. Hirani, T. A., Suzuki, I., Murata, N., Hayashi, H. & Eaton-Rye, J. J. ( 2001; ). Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Mol Biol 45, 133–144.[CrossRef]
    [Google Scholar]
  15. Hsiao, H. Y., He, Q., Van Waasbergen, L. G. & Grossman, A. R. ( 2004; ). Control of photosynthetic and high-light-responsive genes by the histidine kinase DspA: negative and positive regulation and interactions between signal transduction pathways. J Bacteriol 186, 3882–3888.[CrossRef]
    [Google Scholar]
  16. Huang, L., McCluskey, M. P., Ni, H. & LaRossa, R. A. ( 2002; ). Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. J Bacteriol 184, 6845–6858.[CrossRef]
    [Google Scholar]
  17. Ishii, A. & Hihara, Y. ( 2008; ). An AbrB-like transcriptional regulator, Sll0822, is essential for the activation of nitrogen-regulated genes in Synechocystis sp. PCC 6803. Plant Physiol 148, 660–670.[CrossRef]
    [Google Scholar]
  18. Jansèn, T., Kidron, H., Soitamo, A., Salminen, T. & Maenpaa, P. ( 2003; ). Transcriptional regulation and structural modelling of the Synechocystis sp. PCC 6803 carboxyl-terminal endoprotease family. FEMS Microbiol Lett 228, 121–128.[CrossRef]
    [Google Scholar]
  19. Kahlon, S., Beeri, K., Ohkawa, H., Hihara, Y., Murik, O., Suzuki, I., Ogawa, T. & Kaplan, A. ( 2006; ). A putative sensor kinase, Hik31, is involved in the response of Synechocystis sp. strain PCC 6803 to the presence of glucose. Microbiology 152, 647–655.[CrossRef]
    [Google Scholar]
  20. Kaneko, T., Nakamura, Y., Sasamoto, S., Watanabe, A., Kohara, M., Matsumoto, M., Shimpo, S., Yamada, M. & Tabata, S. ( 2003; ). Structural analysis of four large plasmids harboring in a unicellular cyanobacterium, Synechocystis sp. PCC 6803. DNA Res 10, 221–228.[CrossRef]
    [Google Scholar]
  21. Kanesaki, Y., Yamamoto, H., Paithoonrangsarid, K., Shoumskaya, M., Suzuki, I., Hayashi, H. & Murata, N. ( 2007; ). Histidine kinases play important roles in the perception and signal transduction of hydrogen peroxide in the cyanobacterium, Synechocystis sp. PCC 6803. Plant J 49, 313–324.[CrossRef]
    [Google Scholar]
  22. Katoh, H., Hagino, N., Grossman, A. R. & Ogawa, T. ( 2001; ). Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 183, 2779–2784.[CrossRef]
    [Google Scholar]
  23. Kerr, M. K. & Churchill, G. A. ( 2001a; ). Experimental design for gene expression microarrays. Biostatistics 2, 183–201.[CrossRef]
    [Google Scholar]
  24. Kerr, M. K. & Churchill, G. A. ( 2001b; ). Statistical design and the analysis of gene expression microarray data. Genet Res 77, 123–128.
    [Google Scholar]
  25. Komenda, J., Barker, M., Kuvikova, S., de Vries, R., Mullineaux, C. W., Tichy, M. & Nixon, P. J. ( 2006; ). The FtsH protease Slr0228 is important for quality control of photosystem II in the thylakoid membrane of Synechocystis sp. PCC 6803. J Biol Chem 281, 1145–1151.[CrossRef]
    [Google Scholar]
  26. Komenda, J., Kuvikova, S., Granvogl, B., Eichacker, L. A., Diner, B. A. & Nixon, P. J. ( 2007; ). Cleavage after residue Ala352 in the C-terminal extension is an early step in the maturation of the D1 subunit of photosystem II in Synechocystis PCC 6803. Biochim Biophys Acta 1767, 829–837.[CrossRef]
    [Google Scholar]
  27. Li, H. & Sherman, L. A. ( 2000; ). A redox-responsive regulator of photosynthesis gene expression in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 182, 4268–4277.[CrossRef]
    [Google Scholar]
  28. Li, H., Singh, A. K., McIntyre, L. M. & Sherman, L. A. ( 2004; ). Differential gene expression in response to hydrogen peroxide and the putative PerR regulon of Synechocystis sp. strain PCC 6803. J Bacteriol 186, 3331–3345.[CrossRef]
    [Google Scholar]
  29. López-Maury, L., Garcia-Dominguez, M., Florencio, F. J. & Reyes, J. C. ( 2002; ). A two-component signal transduction system involved in nickel sensing in the cyanobacterium Synechocystis sp. PCC 6803. Mol Microbiol 43, 247–256.[CrossRef]
    [Google Scholar]
  30. Los, D. A., Suzuki, I., Zinchenko, V. V. & Murata, N. ( 2008; ). Stress responses in Synechocystis: regulated genes and regulatory systems. In The Cyanobacteria: Molecular Biology, Genomics and Evolution, pp. 117–157. Edited by Herrero, A. & Flores, E.. Norfolk. : Caister Academic Press.
    [Google Scholar]
  31. Mikami, K., Kanesaki, Y., Suzuki, I. & Murata, N. ( 2002; ). The histidine kinase Hik33 perceives osmotic stress and cold stress in Synechocystis sp. PCC 6803. Mol Microbiol 46, 905–915.[CrossRef]
    [Google Scholar]
  32. Minamizaki, K., Mizoguchi, T., Goto, T., Tamiaki, H. & Fujita, Y. ( 2008; ). Identification of two homologous genes, chlAI and chlAII , that are differentially involved in isocyclic ring formation of chlorophyll a in the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 283, 2684–2692.[CrossRef]
    [Google Scholar]
  33. Oliveira, P. & Lindblad, P. ( 2005; ). LexA, a transcription regulator binding in the promoter region of the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 251, 59–66.[CrossRef]
    [Google Scholar]
  34. Oliveira, P. & Lindblad, P. ( 2008; ). An AbrB-Like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC 6803. J Bacteriol 190, 1011–1019.[CrossRef]
    [Google Scholar]
  35. Owttrim, G. W. & Colman, B. ( 1986; ). Purification and characterization of phosphoenolpyruvate carboxylase from a cyanobacterium. J Bacteriol 168, 207–212.
    [Google Scholar]
  36. Paerl, H. W., Pinckney, J. L. & Steppe, T. F. ( 2000; ). Cyanobacterial-bacterial mat consortia: examining the functional unit of microbial survival and growth in extreme environments. Environ Microbiol 2, 11–26.[CrossRef]
    [Google Scholar]
  37. Paithoonrangsarid, K., Shoumskaya, M. A., Kanesaki, Y., Satoh, S., Tabata, S., Los, D. A., Zinchenko, V. V., Hayashi, H., Tanticharoen, M. & other authors ( 2004; ). Five histidine kinases perceive osmotic stress and regulate distinct sets of genes in Synechocystis. J Biol Chem 279, 53078–53086.[CrossRef]
    [Google Scholar]
  38. Postier, B. L., Wang, H. L., Singh, A., Impson, L., Andrews, H. L., Klahn, J., Li, H., Risinger, G., Pesta, D. & other authors ( 2003; ). The construction and use of bacterial DNA microarrays based on an optimized two-stage PCR strategy. BMC Genomics 4, 23.[CrossRef]
    [Google Scholar]
  39. Reddy, K. J., Webb, R. & Sherman, L. A. ( 1990; ). Bacterial RNA isolation with one hour centrifugation in a table-top ultracentrifuge. Biotechniques 8, 250–251.
    [Google Scholar]
  40. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. ( 1979; ). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111, 1–61.[CrossRef]
    [Google Scholar]
  41. Rupprecht, E., Fuhrmann, E. & Schneider, D. ( 2007; ). Stress response of multiple Hsp70 proteins from the cyanobacterium Synechocystis sp PCC 6803. Photosynth Res 91, 289.
    [Google Scholar]
  42. Shi, L., Bischoff, K. M. & Kennelly, P. J. ( 1999; ). The icfG gene cluster of Synechocystis sp. strain PCC 6803 encodes an Rsb/Spo-like protein kinase, protein phosphatase, and two phosphoproteins. J Bacteriol 181, 4761–4767.
    [Google Scholar]
  43. Shoumskaya, M. A., Paithoonrangsarid, K., Kanesaki, Y., Los, D. A., Zinchenko, V. V., Tanticharoen, M., Suzuki, I. & Murata, N. ( 2005; ). Identical Hik–Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J Biol Chem 280, 21531–21538.[CrossRef]
    [Google Scholar]
  44. Singh, A. K. & Sherman, L. A. ( 2002; ). Characterization of a stress-responsive operon in the cyanobacterium Synechocystis sp. strain PCC 6803. Gene 297, 11–19.[CrossRef]
    [Google Scholar]
  45. Singh, A. K., McIntyre, L. M. & Sherman, L. A. ( 2003; ). Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol 132, 1825–1839.[CrossRef]
    [Google Scholar]
  46. Singh, A. K., Summerfield, T. C., Li, H. & Sherman, L. A. ( 2006; ). The heat shock response in the cyanobacterium Synechocystis sp. strain PCC 6803 and regulation of gene expression by HrcA and SigB. Arch Microbiol 186, 273–286.[CrossRef]
    [Google Scholar]
  47. Stewart, W. D. P. & Pearson, H. W. ( 1970; ). Effects of aerobic and anaerobic conditions on growth and metabolism of blue-green algae. Proc R Soc Lond B Biol Sci 175, 293–311.[CrossRef]
    [Google Scholar]
  48. Stock, A. M., Robinson, V. L. & Goudreau, P. N. ( 2000; ). Two-component signal transduction. Annu Rev Biochem 69, 183–215.[CrossRef]
    [Google Scholar]
  49. Summerfield, T. C. & Sherman, L. A. ( 2007; ). Role of sigma factors in controlling global gene expression in light/dark transitions in the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 189, 7829–7840.[CrossRef]
    [Google Scholar]
  50. Summerfield, T. C. & Sherman, L. A. ( 2008; ). Global transcriptional response of the alkali-tolerant cyanobacterium Synechocystis sp. strain PCC 6803 to a pH 10 environment. Appl Environ Microbiol 74, 5276–5284.[CrossRef]
    [Google Scholar]
  51. Summerfield, T. C., Toepel, J. & Sherman, L. A. ( 2008; ). Low-oxygen induction of normally cryptic psbA genes in cyanobacteria. Biochemistry 47, 12939–12941.[CrossRef]
    [Google Scholar]
  52. Suzuki, I., Kanesaki, Y., Hayashi, H., Hall, J. J., Simon, W. J., Slabas, A. R. & Murata, N. ( 2005; ). The histidine kinase Hik34 is involved in thermotolerance by regulating the expression of heat shock genes in Synechocystis. Plant Physiol 138, 1409–1421.[CrossRef]
    [Google Scholar]
  53. Takahashi, Y. & Tokumoto, U. ( 2002; ). A third bacterial system for the assembly of iron–sulfur clusters with homologs in archaea and plastids. J Biol Chem 277, 28380–28383.[CrossRef]
    [Google Scholar]
  54. Tasaka, Y., Gombos, Z., Nishiyama, Y., Mohanty, P., Ohba, T., Ohki, K. & Murata, N. ( 1996; ). Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15, 6416–6425.
    [Google Scholar]
  55. Wada, H. & Murata, N. ( 1990; ). Temperature-induced changes in the fatty-acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92, 1062–1069.[CrossRef]
    [Google Scholar]
  56. Wang, H. L., Postier, B. L. & Burnap, R. L. ( 2004a; ). Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279, 5739–5751.[CrossRef]
    [Google Scholar]
  57. Wang, T., Shen, G. Z., Balasubramanian, R., McIntosh, L., Bryant, D. A. & Golbeck, J. H. ( 2004b; ). The sufR gene (sll0088 in Synechocystis sp. strain PCC 6803) functions as a repressor of the sufBCDS operon in iron-sulfur cluster biogenesis in cyanobacteria. J Bacteriol 186, 956–967.[CrossRef]
    [Google Scholar]
  58. Williams, J. G. K. ( 1988; ). Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. In Methods in Enzymology, pp. 766–778. Edited by Parker, L. & Glazer, A. N.. San Diego. : Academic Press.
    [Google Scholar]
  59. Zhang, Z., Pendse, N. D., Phillips, K. N., Cotner, J. B. & Khodursky, A. ( 2008; ). Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genomics 9, 344.[CrossRef]
    [Google Scholar]
  60. Zhang, P., Allahverdiyeva, Y., Eisenhut, M. & Aro, E. M. ( 2009; ). Flavodiiron proteins in oxygenic photosynthetic organisms: photoprotection of photosystem II by Flv2 and Flv4 in Synechocystis sp. PCC 6803. PLoS ONE 4, e5331.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.041053-0
Loading
/content/journal/micro/10.1099/mic.0.041053-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 301 - 312

Comparison of the number of differentially expressed genes on transition to low-oxygen conditions. Validation of the microarray results using semiquantitative RT-PCR. [PDF of figures](565 KB)

Microarray analysis of genes following transition from aerobic (t0) to low oxygen conditions (t1) in the wild type (WT) and a mutant strain lacking the chromosomal copy of hik31(HK) The table is constructed to conform to the gene names (column A) and the functional categories (columns B–D) from the Cyanobase website(Kazusa, Japan). This analysis was facilitated by the loop design of the experiment and the ANOVA model. The fold change of transcript level at t0 compared with t1 (representing cells following 1 h, incubation under low-oxygen conditions) is shown in columns E and F for the WT and HK strains, respectively. The fold change of transcript level in the WT compared with the HK strain under aerobic and low-oxygen conditions are shown in columns G and H, respectively. The statistical analysis (see Methods, in the main paper) was carried out to compare the differences in the mean values across the treatment resulting the in the -value in column I and false discovery rate (FDR) of 0.05, 0.1 or 0.2 listed in column J. Data are supplied in Excel format(657 KB)



EXCEL
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error